Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Задачи по физике ядра Испытания ядерного оружия Атомные батареи Физика ядерного реактора

Радиоактивное излучение Атомные реакторы и батареи

ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ С ТЕРМОЭЛЕКТРИЧЕСКИМИ ГЕНЕРАТОРАМИ

Космическая гонка, особенно в военной сфере, потребовала энергооснащенности спутников, в десятки раз превышающей ту, что могли обеспечить солнечные батареи или изотопные источники питания. Действительно, на базе радиоактивного изотопа трудно построить прямой преобразователь тепла в электроэнергию (на термоэлементах) большой мощности. В этом отношении намного перспективнее использование цепной ядерной реакции. В космическом пространстве в 2000 находилось 55 ядерных реакторов. Использование атомной-тепловой энергии можно разделить на машинное и безмашинное. Необходимую мощность дают компактные ядерно-энергетические установки (ЯЭУ), которые из-за ограниченных размеров спутников должны работать без габаритных парогенераторов или турбин. Прямое преобразование ядерной тепловой энергии в электрическую имеет решающие преимущества по сравнению с машинным для автономных реакторных энергоустановок сравнительно небольшой мощности (от 3 кВт до 3-5 МВт) и большой ресурсоспособности (от 3 лет непрерывной эксплуатации до 10 лет в перспективе).

Рис.7. Термоэлектрическая космическая ядерная установка

Ядерная электрическая установка (ЯЭУ) предназначена для питания электроэнергией аппаратуры космических аппаратов используется принцип непосредственного преобразования тепловой энергии ядерного реактора в электричество в полупроводниковом термоэлектрическом генераторе. Захоронение ЯЭУ после окончания эксплуатации производится переводом на орбиту, где время существования реактора достаточно для распада продуктов деления до безопасного уровня (не менее 300 лет). В случае любых аварий с космическим аппаратом ЯЭУ имеет в своём составе высокоэффективную дополнительную систему радиационной безопасности, использующую аэродинамическое диспергирование реактора до безопасного уровня.

Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетание с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии - ядерный реактор и преобразователь тепловой энергии в электрическую были объединены в единый агрегат - реактор-преобразователь.

Типичная ядерная энергетическая установка содержит: реактор на быстрых нейтронах с боковым бериллиевым отражателем, включающим 6 цилиндрических регулирующих стержней, холодильник излучатель; 2 контура теплоносителя (эвтектика натрия - калия), электромагнитный насос, термоэлектрический генератор и приводы регулирующих стержней; теневую радиационную защиту гидрида лития обеспечивающую ослабление ионизирующих излучений реактора до уровня допустимых для приборов и оборудования космического аппарата; - излучатель для сброса тепла в космос со второго контура теплоносителя; приставку с агрегатами системы выброса сборки тепловыделяющих элементов реактора из корпуса реактора. Мощность электрическая - 3 кВт, мощность тепловая - 100 кВт, масса ЯЭУ - 930 кг, загрузка урана 235 - 30 кг.

Длительность задержки клеточного деления зависит от поглощенной дозы излучения: чем выше доза, тем больше время задержки деления. В результате проведения многочисленных экспериментов установлено, что для большинства изученных типов клеток, время задержки деления составляет примерно 1 час на каждый 1 Зиверт эквивалентной дозы. Таким образом, универсальность этой реакции клеток на облучение проявляется и в количественном отношении. Необходимо отметить, что с увеличением дозы излучения возрастает не доля прореагировавших клеток, а продолжительность времени задержки деления каждой клетки. В этом состоит принципиальное различие физиологических эффектов облучения от летальных поражений клеток. Продолжительность задержки клеточного деления зависит и от стадии клеточного цикла, на которой находилась облученная клетка. Наиболее длительно время задержки при облучении клеток в S-периоде и G2 –периоде, самое короткое – при облучении в митозе. Большинство клеток, вступивших в митоз, даже при облучении очень высокими дозами, заканчивают деление без задержки.

 Молекулярные механизмы, ответственные  за задержку клеточного деления, пока не известны и они активно обсуждаются. Многие исследователи связывают торможение митозов с подавлением синтеза ДНК. Однако, экспериментальные данные свидетельствуют, что снижение содержания ДНК в клетках является не причиной, а следствием задержки деления. Предполагается, что блокирование митозов вызывается повреждением внутриклеточных структур, ответственных за регуляцию процесса деления ядра и клетки. По-видимому, задержка клеточного деления не является специфическим ответом на действие ионизирующего излучения, а представляет универсальный  защитный механизм организма на любые внешние воздействия. Задержка клеточного деления реакция наблюдается и при действии на организм или на культуру клеток других физических и химических факторов.

 Задержку клеточного деления на определенное время необходимо отличать от полного подавления митозов при высоких дозах облучения, когда клетка в течение значительного промежутка времени продолжает функционировать, но необратимо утрачивает способность к делению. Интервал доз,  в котором происходит временная задержка деления клеток, зависит радиочувствительности организма и от типа облучаемых клеток. Так, для большинства типов делящихся клеток млекопитающих этот интервал находится в пределах от 0 до 10 Зв.


На главную