Сдать анализы. Стоимость сдачи анализов www.gemotest.ru.
Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Задачи по физике ядра Испытания ядерного оружия Атомные батареи Физика ядерного реактора

Радиоактивное излучение Атомные реакторы и батареи

 

ЯЭУ «Топаз-1» разрабатывалась для спутников радиолокационной разведки, «Топаз-2» – для космических аппаратов системы непосредственного телевизионного вещания из космоса. Первый летный образец - спутник «Космос-1818» с установкой «Топаз» вышел на радиационно безопасную стационарную круговую орбиту высотой 800 км 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник – «Космос-1876» был запущен через год. Он отработал на орбите почти в два раза дольше. Успех «Топазов» стимулировал разработку ряда проектов реакторов с термоэмиссионными преобразователями, в частности ядерно-энергетической установки электрической мощностью до 500 кВт на основе реактора с литиевым охлаждением.

На основе ЯЭУ «БЭС» и «Топаз» подготовлен ряд проектов установок с улучшенными характеристиками. Подготовлены технические предложения по термоэлектрической ЯЭУ «Заря-1» для космического аппарата оптико-электронной разведки. ЯЭУ «Заря-1» отличается от «БЭС» уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов). В 1978 создана ЯЭУ «Заря-2» электрической мощностью 24 кВт и ресурсом 10000 часов, а потом и космическая ядерная энергодвигательная установка «Заря-3» электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась для создания импульсов тяги коррекции орбиты спутников и энергообеспечения специальной аппаратуры.

Термоэмиссионная космическая ядерная установка «ТОПАЗ 100/40» представляет собой двухрежимную ядерную энергетическую установку (ЯЭУ). Она предназначена для питания электроэнергией электроракетных двигателей (ЭРД) при выводе на высокую (вплоть до геостационарной) орбиты спутников системы спутниковой связи «Космическая звезда» (Space Star) и питания электроэнергией бортовой аппаратуры. Вывод на мощность реактора энергоустановки происходит только при достижении космическим аппаратом радиационно-безопасной орбиты (800 км и выше). Конструкция ЯЭУ удовлетворяет принятым на 47 сессии Генеральной Ассамблеи ОО документа «Принципы, касающиеся использования ядерных источников в космическом пространстве». В стартовом положении ЯЭУ размещена в отсеке космического аппарата диаметром 3,9 метра и длиной 4,0 метра под обтекатель. В орбитальном положении ЯЭУ раздвинута (реактор максимально отдалён от аппаратуры) и имеет длину 16,0 метров и диаметр 4 метра.

Ядерная энергетическая установка содержит: термоэмиссионный реактор-преобразователь с обслуживающими системами: привод органов регулирования, подача рабочего тела (цезий) в электрогенерирующие каналы; теневую радиационную защиту из гидрида лития, обеспечивающую ослабление радиационного излучения реактора до уровня, допустимого для приборов космического аппарата; систему отвода неиспользованного тепла от реактора с жидкометаллическим (эвтектический сплав натрия и калия) теплоносителем, включающую электромагнитный насос, холодильник излучатель, состоящий из 9 панелей на тепловых трубах, для сброса тепла в космическое пространство и другие агрегаты. Мощность электрическая - 40 кВт, мощность электрическая в режиме питания ЭРД - 100 кВт, ресурс, включая работу до 1 года на 100 кВт режиме - 7 лет, масса ЯЭУ - 4400 кг, загрузка урана 235 - 45 кгВо избежание быстрого падения ЯЭУ на Землю спутники по завершении активного существования переводятся на орбиту захоронения высотой около 1000 км, где отработавший реактор должен просуществовать oт 300 до 600 лет. На подобную орбиту переводятся и аварийные спутники. Сделать это, однако, удавалось не всегда. За почти 20 лет запусков было четыре случая падения спутника на Землю: два - в океан и один - на сушу.

Оценка клеточной радиочувствительности. Кривые выживания.

Для определения количества живых клеток после облучения используют способность живых клеток к неограниченному размножению, вследствие чего одиночные клетки образуют колонии или так называемые «бляшки» на поверхности питательных сред. Рассмотрим некоторые классические опыты, которые явились основой для создания методов, используемых  для количественной оценки радиочувствительности клеточных культур. Впервые количественнй метод для определения выживаемости клеток был разработан в 1965 году Г.Паком и П. Маркусом на культуре клеток HeLa. Суть этого метода заключается в следующем. Определенное количество культуральных клеток высевают на твердую питательную среду  в чашках Петри. После этого чашки с клетками облучают различными дозами радиации  и инкубируют в оптимальных, для роста этих клеток, условиях. Через определенный промежуток времени подсчитывают число образовавшихся колоний на поверхности питательной среды. Выживаемость клеток при определенной дозе облучения определяют как отношение числа колоний выросших в облученных чашках, к числу колоний в контрольной чашке Петри (без облучения). Этот метод и в настоящее время широко используется для оценки радичувствительности клеток in vitro.

 Другой метод определения выживаемости клеток in vivo (в организме) был предложен в 1961 году Дж. Тилл и Е. Мак-Кулох. Клетки костного мозга, печени или селезенки вводят в вену летально облученных мышей. Через неделю на селезенке мышей появляются колонии, состоящие из потомства введенных клеток. Число колоний, образующихся на селезенке, показывает пролиферативную (клоногенную) способность введенных клеток. Эта способность зависит от дозы облучения вводимых клеток. Путем сравнения числа колоний, полученных от облученных в различных дозах клеток, и числа колоний на селезенках контрольных мышей (с клетками без облучения), получают кривые, описывающие зависимость доза-эффект, или кривые выживания.

 Современные технологии выращивания культур клеток и тканей позволяют экспериментаторам оценить in vitro радиочувствительность любых типов клеток микроорганизмов, растений и животных.

 Кривые выживания клеток

 

Кривой выживания называют кривую, описывающую зависимость количества выживших клеток, организмов от дозы облучения. Кривая выживания представляет кривую «доза-эффект», когда критерием радиобиологического эффекта является смерть клетки. Как уже отмечалось, кривые «доза-эффект» имеют экспоненциальный характер. Кривые выживания, полученные опытным путем на различных типах клеток, отличаются от теоретических ожидаемых кривых. Они также отличаются и от классических дозовых кривых, полученных в экспериментах с макромолекулами. Кривые выживания описываются уравнением

 N/ N0 = 1 - (1- e-D/D0)n

 где n - экстраполяционное число, которое определяется как значение ординаты в месте ее пересечения с экстраполированным прямолинейным участком кривой выживания. D0 - приращение дозы, снижающее выживаемость клеток в е раз на прямолинейном участке кривой выживания. Как видно, кривые выживания имеют так называемое «плечо», т.е. относительно горизонтальный участок кривой  до определенной дозы, где повышение дозы незначительно снижает количество живых клеток.

Рис. 1. Основные показатели кривой выживаемости клеток при облучении культуры клеток ELD рентгеновскими лучами (Ярмоненко и др., 1976)

Таким образом, построив на основе экспериментальных данных, кривую выживаемости можно определить значения величин D37, D0, Dq, n, которые характеризуют радиочувствительност клеток и их способность восстанавливать радиационные повреждения. При дозе D37 (среднелетальной) погибает 37 % облученных клеток. D0, Dq - характеризуют регенерационную способность клеток, которая в кончном счете характеризует устойчивость клеток к облучению. Чем выше значение Dq, чем длиннее плечо, тем выше способность клеток посрадиационному восстановлению и следовательно, их устойчивость к облучению.


На главную