Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Физика ядерного реактора Авария на ЧАЭС Повышение безопасности АЭС Системы контроля на атомной станции Авария на ЧАЭС

Эффективность комплексного применения методов НК

Объективный анализ применения различных методов привел к целесообразности применения комплексных систем контроля, которые используют разные по физической природе методы исследования, что, в свою очередь, позволит исключить недостатки одного метода, взаимодополнить методы и реализовать тем самым принцип "избыточности" для повышения надежности контроля систем и агрегатов. Различные методы НК характеризуется разными значениями технико-экономических параметров: чувствительностью, условиями применения, типами контролируемых объектов и т.д. Поэтому при формировании комплекса методов НК разной физической природы возникает проблема оптимизации состава комплекса с учетом критериев их эффективности и затрат ресурсов.

Комплексное использование наиболее чувствительных методов не означает, что показатели достоверности будут соответственно наибольшими, а в свою очередь, учет первоочередности технических показателей может привести к противоречиям с экономическими критериями, такими как трудозатраты, стоимость, время контроля и т.д., что, в свою очередь, может привести к тому, что выбранный комплекс методов НК может оказаться с экономической точки зрения неэффективным.

Для реализации различных методов НК разработаны различные приборы: дефектоскопы, толщиномеры, тепловизоры для разных дефектов (трещин, негерметичностей), электронное оборудование (для нахождения ослабления электрических контактов), механическое оборудование, которое имеет различные технико-экономические характеристики и технологии использования для различных типов дефектов и др.

Из анализа имеющихся характеристик вытекает необходимость решения задачи выбора состава (комплекса) методов НК как задачи в оптимизационной постановке.

Комплексное применение методов НК для диагностики и обнаружения дефектов в агрегатах и системах направлено на обеспечение увеличения эффективности и достоверности контроля, продления работоспособности и ресурса.

Задача формирования комплекса различных методов НК для обнаружения совокупности возможных (наиболее опасных дефектов) в системе может быть сформулирована как оптимизационная многоуровневая однокритериальная (многокритериальная) задача дискретного программирования. Решение задачи - оптимальное сочетание различных методов НК, применение которых наиболее эффективно при эксплуатации и анализе ресурса дорогостоящих систем.

Актуальными при проведении НК являются также задачи оптимального распределения объемов контроля на всех этапах жизненного цикла объекта, оптимизации мест и параметров контроля, планирования технического обслуживания системы с учетом экономических показателей.

Электромагнитные методы неразрушающего контроля оборудования средства

Задачи, решаемые применением электромагнитных методов неразрушающего контроля, изготовленное из различных марок сталей, перспективным является применение современных высокопроизводительных магнитных и вихретоковых методов неразрушающего контроля, основанных на анализе взаимодействия электромагнитного поля с объектом контроля. Магнитные методы являются наиболее старыми из методов НК, связанных с применением приборов и дефектоскопических материалов. Первичные преобразователи, применяемые для реализации и магнитных и вихретоковых методов, фиксируют изменение только одной составляющей электромагнитного поля - статического или переменного магнитного поля. В дальнейшем, за исключением случаев, когда необходимо выделить существенные особенности магнитных и вихретоковых методов, будем называть их электромагнитными методами неразрушающего контроля (ЭМНК). Электромагнитные методы неразрушающего контроля обладают такими положительными качествами, как бесконтактность, высокая производительность, получение первичной информации в виде электрических сигналов, простота конструкции и высокая надежность первичных преобразователей, способность работать в экстремальных условиях.

Контроль изделий по совокупности изменяемых параметров не встречает затруднений, однако, необходимо применять специальные методы выделения сигнала, характеризующего интересующий показатель качества с одновременным подавлением сигналов от мешающих факторов.

Электромагнитные методы применяются для повышения качества и обеспечения безопасной эксплуатации оборудования на всех жизненных стадиях, включая выплавку стали, прокат листа, изготовление, монтаж, диагностику в процессе эксплуатации и прогнозирование остаточного ресурса.

Крупногабаритность оборудования для переработки нефти и большая протяженность сварных соединений предопределяют возможность широкого применения  высокопроизводительных электромагнитных методов неразрушающего контроля для выявления различных видов нарушения сплошности основного металла оборудования и металла сварных швов.

Для дефектоскопии оборудования, изготовленного из ферромагнитных материалов, применяются магнитные методы, позволяющие выявлять поверхностные, подповерхностные и внутренние дефекты.

Магнитные методы успешно применяются для дефектоскопии основных деталей аппаратов: монтажных цапф, основных и крепежных шпилек, линз и обтюраторов, труб и фитингов.

Для дефектоскопии высоконагруженных резьбовых соединений успешно применяется электромагнитный метод, основанный на регистрации поперечной тангенциальной составляющей магнитного поля, обусловленного дефектом. Для выявления поверхностных дефектов в электропроводящих ферромагнитных и неферромагнитных металлах применяются вихретоковые методы.

Вихретоковые методы успешно применяются для выявления в оборудовании, изготовленном из нержавеющих сталей и биметаллов, зон, пораженных межкристаллитной коррозией. Одним из перспективных направлений широкого применения вихретоковых методов является контроль труб теплообменников с помощью внутренних проходных вихретоковых преобразователей.

Электромагнитные методы неразрушающего контроля позволяют не только обнаружить дефекты на поверхности или в толще изделия, но и определить их форму и размеры, а также пространственное положение. Кроме решения задач дефектоскопии электромагнитные методы широко используются для структуроскопии материалов и изделий, контроля размеров изделий, измерения толщины стенок, металлических и неметаллических защитных покрытий, измерения зазоров, перемещений и вибраций в машинах и механизмах.

При контроле электромагнитными методами ферромагнитных материалов задача состоит в том, чтобы на основе анализа электрических и магнитных характеристик проверяемого изделия определить химический состав, прочность, твердость металла, глубину цементированного и азотированного слоев, количества углерода в слое, степень наклепа, остаточные или действующие напряжения, сортировать стали по маркам и осуществлять контроль качества термической и химико-термической обработки и т.д..


На главную