Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Промышленные реакторы Исследовательские ядерные реакторы Задачи по физике ядра Архитектура ЭВМ Вычислительные комплексы

Основы вычислительных комплексов

2.5. Функционально распределенные системы

 

На вычислительные системы общего назначения, используемые для научно-технических расчетов и моделирования, в системах автоматизированного проектирования и управления производством, возлагается выполнение широкого спектра задач. При этом вычислительная система должна реализовать обширный набор функций над различными типами и структурами данных: обработку целочисленных значении, действительных чисел, графической информации и изображений, текстов, матричную обработку, трансляцию программ, доступ к данным, организованным в наборы или базы, и т, д. Кроме того, для управления вычислительными процессами и функционированием необходимо реализовать специфические функции управляющих программ операционной системы, управления виртуальной памятью, сходствами ввода – вывода и передачи данных, а также контроль и диагностику системы и др.

В ЭВМ первого и второго поколений все эти функции реализовались одним процессором и интерпретировались им в виде арифметических и логических операций. Такое же положение сохранилось в основном и в ЭВМ третьего поколения, в которых лишь простейшие операции ввода – вывода снимались с центрального процессора и передавались специализированным устройствам – каналам или процессорам ввода – вывода.

Высокопроизводительные системы общего назначения создаются на основе многопроцессорных комплексов. Использование в таких системах однотипных процессоров, аналогичных процессорам ЭВМ общего назначения, оказывается неэкономичным, поскольку в каждом процессоре в каждый момент времени используется лишь часть ресурсов, обеспечивающих обработку данных одного типа. Наиболее экономичный способ построения многопроцессорной системы общего назначения – использование специализированных процессоров, ориентированных на реализацию определенных функций: обработки скалярных величин, текстов, матричной обработки, трансляции программ, управления данными и др. При этом значительно сокращаются затраты оборудования в процессоре и повышается его производительность. Кроме того, совокупность таких процессоров предоставляет необходимый для решения задач набор функций, который можно изменять, по-разному комплектуя систему и приспосабливая ее к рабочей нагрузке.

Многопроцессорные вычислительные системы, построенные на основе разнотипных процессоров, ориентированных на реализацию определенных функций, называются функционально распределенными вычислительными системами (ФРВС). Это неоднородные системы и строятся они как проблемно-ориентировочные – путем включения в их состав набора процессоров, соответствующего потребностям обрабатываемых задач.

Рис. 2 12 Функционально распределенная вычислительная система

 

Структура и функционирование. Принцип структурной организации ФРВС представлен па рис. 2.12. Система состоит из совокупности процессоров, имеющих индивидуальную память и основной памяти. Ядро системы обеспечивает информационное сопряжение всех устройств. Ядро может быть реализовано в виде, системной шины (магистрали), коммутационного поля или коммутатора основной памяти, В первых двух случаях каждый процессор может обмениваться данными с любыми другими процессорами и основной памятью. При использовании коммутатора основной памяти обмен данными производится только через память. В представленной структуре управляющий процессор реализует супервизорные функции – управление ресурсами и задачами, обрабатывающий процессор – обработку числовых и символьных данных, матричный процессор – матричную и векторную обработку, языковой процессор – трансляцию программ, процессоры баз данных – доступ к наборам данных и управление базами данных, процессор ввода – вывода обслуживает устройства ввода – вывода и телекоммуникационный процессор обеспечивает передачу данных по каналам связи. Состав процессоров в конкретной системе зависит от класса решаемых задач. Так, в системе могут использоваться два обрабатывающих процессора или несколько телекоммуникационных.

Обработка каждой задачи распределяется между процессорами. При этом функции управления данными реализуются процессорами, изображенными в нижней части рисунка. Разные шаги заданий, программы и ветви (блоки) программ выполняются обрабатывающим, матричным и языковым процессорами. Распределение ресурсов между задачами и управление задачами производится управляющим процессором, который реализует управляющие программы операционной системы. Загрузка оборудования увеличивается за счет мультипрограммирования и, возможно, параллельных вычислений на уровне подзадач.

Специализация процессоров обеспечивается на разных уровнях – на уровне структуры, микропрограммном и программном. Специализация на уровне структуры достигается за счет использования и операционной части процессора специальных регистровых структур и микрооперации, эффективно реализующих заданный набор операций. Такими являются матричные процессоры, содержащие совокупность арифметическо-логических устройств, с помощью которых параллельно обрабатываются векторы и матрицы. Специализация на микропрограммном уровне сводится к созданию с помощью микропрограмм специализированного набора операций, ориентированного на вычисление заданного набора функций. При использовании ОЗУ для хранения микропрограмм специализация процессора производится путем динамического микропрограммирования – загрузки в память соответствующего набора микропрограмм. В этом случае возможно оперативно изменять конфигурацию системы, загружая в структурно одинаковые процессоры необходимые наборы микропрограмм. Функциональная специализация процессоров на программном уровне достигается за счет загрузки в процессор соответствующего набора программ.

Рис. 2.13. Система SYMBOL

 

В ФРВС используются, как правило, все три уровня специализации процессоров. Обрабатывающие и матричные процессоры имеют специализированную структуру: первые – для выполнения традиционных операций над логическими значениями, целыми и действительными числами и строками символов, последние – для производства векторных и матричных операций. Остальные процессоры функционально специализируются на уровне микропрограмм или программ.

 

Реализация. Принцип функционально распределенной организации применялся уже в ЭВМ третьего поколения, где для ввода – вывода использованы каналы и процессоры ввода – вывода. Примерами являются ЭНМ серий IBM 360, IBМ 370 и ЕС ЭВМ.

Одна из первых систем, в полной мере реализующая принцип функционально распределенной организации, – система SYMBOL, созданная в 1970 г. Это неоднородная восьмипроцессорная система (рис. 2.13). Процессор-супервизор управляет работой всей системы, координируя остальные процессоры, создавая очереди заявок к ним и распределяя процессоры между задачами. Процессор-транслятор обеспечивает перевод операторов с входного языка на внутренний язык системы (на машинный язык). Центральный процессор реализует обычные функции выборки команд и также арифметические и логические операции. В системе используется виртуальная память, работа которой обеспечивается процессором управления памятью. Этот процессор обрабатывает заявки от других процессоров на запись и чтение данных произвольной структуры. Виртуальная память состоит из 216 страниц, содержащих 256 64-битных слов, емкость основной памяти – 8 кслов (32 страницы). В дисковой памяти размещается примерно 50 тыс. страниц. Распределение емкости дисковой памяти, поиск и передача требуемой страницы данных реализуются процессором управления дисками. Управление вводом – выводом данных возложено на процессор управления каналами. К этому процессору через каналы передачи данных подключены внешние устройства. Редактирование и преобразование вводимых – выводимых данных обеспечивается процессором сопряжения, который работает в основном совместно с процессором управления каналами.

Рис. 2.14. Система System/80

 

Процессоры сопрягаются посредством главной шины, состоящей из 111 линий причем используются для передачи слова данных 64 линии, адреса слова – 24 линии, адреса абонента, которому направляются данные, – 5 линий. Остальные линии служат для передачи кода операции, приоритета сообщений и для синхронизации работы абонентов. При относительно низком быстродействии (длительность цикла процессоров – 320 нс и оперативной памяти – 2,5 мкс) система отличается высокой производительностью, составляющей 75 тыс. операторов входного языка в минуту, что примерно в 10 раз больше, чем у больших ЭВМ общего назначения.

На рис 2 14 представлена упрощенная структурная схема вычислительной системы семейства System/80 фирмы IBM. В системе может использоваться до 8–16 процессоров, взаимодействующих через основную память и интерфейс прямого управления. Обслуживающий процессор обеспечивает работу пульта системы, планирование, контроль и диагностику. Процессор ввода – вывода обслуживает внешние устройства и выполняет первичную обработку (редактирование) вводимых – выводимых данных. Языковой процессор предназначен для трансляции программ с языка высокого уровня на машинный язык, т. е. в систему команд соответствующих процессоров. Обрабатывающий процессор выполняет обычные операции центрального процессора ЭВМ. Файловый процессор управляет данными, реализуя создание, открытие и закрытие наборов данных и доступ к данным, хранимым в наборах с различной организацией. Каждый процессор имеет собственную оперативную память. Функциональная ориентация процессоров обеспечивается на микропроцессорном уровне – путем загрузки в процессор соответствующих наборов микропрограмм. Возможности системы могут расширяться за счет подключения нескольких процессоров ввода – вывода, обрабатывающих процессоров, а также матричного процессора.

На главную