Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Промышленные реакторы Исследовательские ядерные реакторы Реакторы третьего поколения ВВЭР-1500 Задачи по физике ядра

Структура и принципы функционирования ЭВМ

Более чем за полвека развития вычислительных средств прогресс в аппаратной реализации ЭВМ и их технических характеристик превзошел все прогнозы, и пока не заметно снижение его темпов. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом, пока не претерпели коренных изменений (за исключением систем параллельной обработки информации).

Любая ЭВМ неймановской архитектуры содержит следующие основные устройства:

В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором. Обобщенная логическая структура ЭВМ представлена на рис. 1.3.

Рис. 1.3. Обобщённая логическая структура ЭВМ

Процессор, или микропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислении по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для ее увеличения процессор использует собственную намять небольшого объема, именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ.

Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы — последовательности инструкций (команд), записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает ее, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.

Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве — памяти ЭВМ, куда они вводятся через устройство ввода. Емкость памяти измеряется в величинах, кратных байту. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.

Внутренняя, или основная память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины.

Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объему составляющая" большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.

Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.

Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.

ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для резервирования информации.

Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из нее, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. К ним относятся, в частности, дисплеи (мониторы), клавиатура, манипуляторы типа «мышь», алфавитно-цифровые печатающие устройства (принтеры), графопостроители, сканеры и др. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.

Системный интерфейс — это конструктивная часть ЭВМ, предназначенная для взаимодействия ее устройств и обмена информацией между ними.

В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.

Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В первых для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.

Пульт управления служит для выполнения оператором ЭВМ или системным программистом системных операций в ходе управления вычислительным процессом. Кроме того, при техническом обслуживании ЭВМ за пультом управления работает инженерно-технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

Основные характеристики вычислительной техники

К основным характеристикам вычислительной техники относятся ее эксплуатационно-технические характеристики, такие, как быстродействие, емкость памяти, точность вычислений и др.

Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения и т. д. С другой стороны, быстродействие

ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Для решения сложных задач возможно объединение нескольких ЭВМ в единый вычислительный комплекс с требуемым суммарным быстродействием.

Наряду с быстродействием часто пользуются понятием производительность. Если первое обусловлено, главным образом, используемой в ЭВМ системой элементов, то второе связано с ее архитектурой и разновидностями решаемых задач. Даже для одно» ЭВМ такая характеристика, как быстродействие, не является величиной постоянной. В связи с этим различают: 

Емкость, или объем памяти определяется максимальным количеством информации которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограниченна.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов самых разнообразных приложениях. Однако, если этого мало, можно использовать уд военную или утроенную разрядную сетку.

Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна имеет команда для ее распознания. Количество основных разновидностей команд невелико, с их помощью ЭВМ способны выполнять операции сложения, вычитания, умножена деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняете модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этап развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, свзязанный с разработкой процессоров с полным набором команд, — архитектура CIS (Complete Instruction Set Computer — компьютер с полным набором команд). С друге стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употреблю емых команд, что позволяет упростить аппаратные средства процессора и повысить ei быстродействие — архитектура RISC (Reduced Instruction Set Computer — компьютер сокращенным набором команд).

Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

Надежность ЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

Для более сложных структур типа вычислительного комплекса или системы понятие «отказ» не имеет смысла. В таких системах отказы отдельных элементов приводят к некоторому снижению эффективности функционирования, а не к полной потере работоспособности в целом.

Важное значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценивании конкретных сфер применения ЭВМ.

Перспективы развития вычислительных средств

Появление новых поколений ЭВМ обусловлено расширением сферы их применения, требующей более производительной, дешевой и надежной вычислительной техники. В настоящее время стремление к реализации новых потребительских свойств ЭВМ стимулирует работы по созданию машин пятого и последующего поколений. Вычислительные средства пятого поколения, кроме более высокой производительности и надежности при более низкой стоимости, обеспечиваемых новейшими электронными технологиями, должны удовлетворять качественно новым функциональным требованиям:

В настоящее время ведутся интенсивные работы как по созданию ЭВМ пятого поколения традиционной (неймановской) архитектуры, так и по созданию и апробации перспективных архитектур и схемотехнических решений. На формальном и прикладном уровнях исследуются архитектуры на основе параллельных абстрактных вычислителей (матричные и клеточные процессоры, систолические структуры, однородные вычислительные структуры, нейронные сети и др.) Развитие вычислительной техники с высоким параллелизмом во многом определяется элементной базой, степенью развития параллельного программного обеспечения и методологией распараллеливания алгоритмов решаемых задач.

Проблема создания эффективных систем параллельного программирования, ориентированных на высокоуровневое распараллеливание алгоритмов вычислении и обработки данных, представляется достаточно сложной и предполагает дифференцированный подход с учетом сложности распараллеливания и необходимости синхронизации процессов во времени.

Наряду с развитием архитектурных и системотехнических решений ведутся работы по совершенствованию технологий производства интегральных схем и по созданию принципиально новых элементных баз, основанных на оптоэлектронных и оптических принципах.

В плане создания принципиально новых архитектур вычислительных средств большое внимание уделяется проектам нейрокомпьютеров, базирующихся на понятии нейронной сети (структуры на формальных нейронах), моделирующей основные свойства реальных нейронов. В случае применения био- или оптоэлементов могут быть созданы соответственно биологические или оптические нейрокомпьютеры. Многие исследователи считают, что в следующем веке нейрокомпьютеры в значительной степени вытеснят современные ЭВМ, используемые для решения трудно формализуемых задач. Последние достижения в микроэлектронике и разработка элементной базы на основе биотехнологий дают возможность прогнозировать создание биокомпьютеров.

Важным направлением развития вычислительных средств пятого и последующих поколений является интеллектуализация ЭВМ, связанная с наделением ее элементами интеллекта, интеллектуализацией интерфейса с пользователем и др. Работа в данном направлении, затрагивая, в первую очередь, программное обеспечение, потребует и создания ЭВМ определенной архитектуры, используемых в системах управления базами знаний, — компьютеров баз знаний, а так же других подклассов ЭВМ. При этом ЭВМ должна обладать способностью к обучению, производить ассоциативную обработку информации и вести интеллектуальный диалог при решении конкретных задач.

В заключение отметим, что ряд названных вопросов реализован в перспективных ЭВМ пятого поколения либо находится в стадии технической проработки, другие — в стадии теоретических исследований и поисков.

Основные понятия об информации и информатике