РБМК ВВР Задачи по физике ядра Испытания ядерного оружия Атомные батареи Физика ядерного реактора Курсовые по энергетике Термоядерный синтез Термоядерный реактор Атомные реакторы на быстрых нейтронах Развитие энергетики России

Основной конструктивной деталью активной зоны является твэл, в значительной мере определяющий ее надежность, размеры и стоимость. В энергетических реакторах, как правило, используются стержневые твэлы с топливом в виде прессованных таблеток двуокиси урана, заключенных в оболочку из стали или циркониевого сплава. Твэлы для удобства собираются в тепловыделяющие сборки (ТВС), которые устанавливаются в активной зоне ядерного реактора.

В твэлах происходит генерация основной доли (более 90%) тепловой энергии и передача ее теплоносителю.

В результате деления, тепловая энергия выделяется в таблетке, которая нагревается. За счет теплопроводности тепловая энергия предается на оболочку. Теплоноситель, омывая оболочку, снимает тепловую энергию и нагревается. Аккумулируя выделившуюся в результате деления в ядерном топливе энергию, поток теплоносителя выносит ее за пределы активной зоны для производства пара. Если возраст нейтронов зависел только от рассеивающих и замедляющих свойств среды, то квадрат длины диффузии теплового нейтрона не будет зависеть от замедляющих свойств среды, т.е. все равно, x большое или маленькое, мы рассматриваем уже нейтрон тепловой.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен 1/3. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уноситься водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.

Однако главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.

Большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа урана-235. Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238, поглощая нейтроны, посредством двух последовательных β–-распадов превращаются в ядра плутония, которые затем можно использовать в качестве ядерного топлива. Коэффициент воспроизводства таких реакторов достигает 1,5, то есть на 1 кг урана-235 получается до 1,5 кг плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И.В. Курчатова.

В 1954 г. в России была пущена первая в мире атомная электростанция (АЭС) мощностью 5 МВт (г. Обнинск). К 80-м годам прошлого столетия в мире насчитывалось ~ 300 действующих ядерных реакторов общей установленной мощностью ~ 200 ГВт (эл.). Ядерная энергетика производила около 10% общемирового количества электроэнергии.

К концу 2007 года в 32-х странах мира действовали 439 ядерных энергетических реакторов общей установленной мощностью 371,7 ГВт (э). Ядерная доля в электрической генерации в мире составила 17%.

Ближайшие перспективы мировой ядерной энергетики характеризуются тем, что в двенадцати странах строится 30 ядерных энергоблоков общей мощностью около 23,4 ГВт (э). Еще около четырех десятков стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике.

В России сегодня эксплуатируются 31 ядерный энергоблок общей установленной электрической мощностью 23,2 ГВт. Все ядерные энергоблоки, включая быстрый реактор БН-600, работают на обогащенном урановом топливе.

 Во введении обсуждается необходимость изучения перспектив развития атомной энергетической отрасли. Ввиду наличия большого числа неопределенностей существующих в энергетических потребностях разных стран и традиционной сырьевой базы, такие исследования представляются целесообразными. Наиболее походящим способом, позволяющим выполнить эти расчеты, является математическое моделирование. Несмотря на существенные приближения, которые используются в таких моделях, в конечном итоге они позволяют выявить критические места в развитии, оценить в численном выражении потребности в различных ресурсах и последствия с точки зрения экологии.

Также во введении рассмотрены основные сценарии развития АЭ в мире. Показано как масштабы установленных мощностей и запасы природного урана влияют на структуру атомной отрасли.

В первой главе дано обоснование целесообразности моделирования системы АЭ, которое в своих результатах предоставляет не только качественную, но и количественную оценку при наличии большого числа неопределенностей. Для этого были рассмотрены аспекты, присущие энергетической отрасли: 

структура энергетики;

инфраструктурные производства;

структура произведенной энергии;

ресурсная база;

экологическое воздействие;

региональное и глобальное рассмотрение;

экономика энергетического комплекса.

Отдельно рассмотрены особенности атомной энергетики:

структура генерирующих мощностей АЭС;

ресурсная база;

инфраструктурные производства;

экологическое воздействие.


На главную