Курсовые по энергетике
БН
Экология
Карта

В дальнейшем, при расчете коэффициентов теплоотдачи в 19-ти элементной ТВС в подобных условиях испытаний рекомендуется введение уточняющего коэффициента Кa=aэксп/aрасч (рисунок 16), учитывающего особенности конструкции ЭТВС и теплообмена в переходной области.


Используя зависимости изменения во времени основных параметров, полученные в результате реакторных испытаний, выполнен расчет температуры поверхности топливного сердечника при наличии локального вздутия оболочки. Расположение топливного сердечника с эксцентриситетом по отношению к оболочке после разгерметизации приводит к появлению неравномерности температуры по его периметру и некоторому повышению температуры в области разгерметизации. По результатам расчета при наличии эксцентриситета e=0,5 (среднее значение, определенное по фотографиям шлифов поперечных сечений) между топливом и оболочкой неравномерность температуры по периметру наружной поверхности топливного сердечника составляет 60…70оС. Теория упругого рассеяния. Борновское приближение

Важным результатом эксперимента является измеренное повышенное окисление внутренней поверхности оболочки, которая находилась при значительно меньшем времени контакта с перегретым паром, чем наружная поверхность.

Результаты расчета температуры оболочки в месте наибольшей толщины окисной пленки показали, что тепло, выделяющееся в экзотермической реакции окисления, приводит к повышению температуры, что может быть одной из причин повышенного окисления. В результате расчета получено значение температуры оболочки в месте максимальной толщины пленки 991оС. 

Для определения массы прореагировавшего циркония в программном комплексе ТРАП используется эмпирическая формула:

;

где Dm – количество прореагировавшего циркония, мгZr/см2;

 t - время, с;

 Т – температура, о К;

 R – газовая постоянная R=8,314Дж/(моль·К);

  А и В – коэффициенты.

Применение предложенных в литературе значений коэффициентов А и В приводит к занижению толщины окисной пленки по сравнению с измеренной. По-видимому, при их определении не учитывалось влияние на скорость образования пленки факторов реакторного облучения. Итерационные расчеты, выполненные с использованием полученных материаловедческих данных, позволили вычислить и рекомендовать новые значения коэффициентов: А = 6×107; В = 2×105.

Представленные результаты обработки экспериментальных данных позволяют получать в предтестовых расчетах при планировании и подготовке интегральных реакторных экспериментов по программе «Большая течь» реалистичные параметры испытания фрагментов ТВС ВВЭР.


Расчетно-экспериментальный анализ условий облучения и разработка процедуры определения флюенса быстрых нейтронов

для образцов-свидетелей корпусов реакторов ВВЭР-440

Во введении обоснована актуальность темы диссертации, сформулированы цель работы и решаемые задачи, научная новизна и практическая ценность, изложены основные положения, выносимые на защиту.

В первой главе рассмотрено современное состояние проблемы определения флюенса быстрых нейтронов на ОС.

В начале раздела рассматриваются особенности конструкции реакторной установки (РУ) ВВЭР-440. Проведен анализ программы ОС реакторов ВВЭР-440, выделены основные недостатки штатного нейтронно-дозиметрического сопровождения ОС. Показано, что применение только штатных нейтронно-активационных детекторов (НАД) не позволяет определить флюенс нейтронов на каждом образце.

 Представлен обзор основных расчетных и экспериментальных подходов используемых при определении флюенса нейтронов на ОС. Рассмотрено применение метода нейтронно-активационного анализа для решения задач внутриреакторной дозиметрии. Приведены наиболее распространенные методы измерения удельных активностей нейтронно-активационных детекторов. Также в разделе рассматриваются основные методы расчета транспорта нейтронов для оценки нейтронных полей в реакторах ВВЭР и наиболее распространенные программные пакеты, применяемые для этих целей.

 Проведен анализ нейтронно-дозиметрических исследований ОС КР ВВЭР-440, выполнявшихся в России и за рубежом. Показаны основные достоинства и недостатки процедуры определения флюенса быстрых нейтронов на ОС ВВЭР-440, применявшейся при исследовании ОС Российских и Украинских АЭС. Показано, что недостатки, а также изменения, которые с течением времени претерпевала процедура определения флюенса нейтронов на ОС реакторов ВВЭР-440, не позволяют рассматривать результаты испытаний ОС как согласованный массив данных.

 Процедуры определения флюенса быстрых нейтронов на ОС ВВЭР-440, используемые в других странах опираются на использование расширенных наборов НАД, которыми были оснащены ОС при проведении модернизации штатных программ ОС и результаты расширенных дозиметрических экспериментов, выполненных в каналах ОС ВВЭР-440.

Программа ОС Российских и Украинских реакторов ВВЭР-440 подобной модернизации не подвергалась, и расширенных экспериментальных исследований параметров нейтронных полей в каналах ОС ВВЭР-440 также не выполнялось, при этом в литературе результаты исследований, проведенных за рубежом, представлены в недостаточно полном для использования объеме и зачастую расходятся друг с другом.

Обоснование безопасной эксплуатации КР выполняется на основе моделей радиационного охрупчивания материалов КР ВВЭР-440, которые, в свою очередь, опираются на результаты исследований ОС. Это приводит к необходимости проведения расширенных расчетно-экспериментальных исследований условий облучения ОС КР ВВЭР-440, разработки единого расчетно-экспериментального подхода к определению флюенса нейтронов, который должен учитывать особенности штатной программы ОС и имеющиеся экспериментальные данные по исследованию выгруженных ранее образцов, а также к необходимости выполнения переоценки флюенса нейтронов на всех выгруженных и исследованных комплектах ОС ВВЭР-440 и исследовательских программ.

Вторая глава посвящена разработке методики переоценки флюенса быстрых нейтронов на ОС ВВЭР-440.

Основные требования к методике определения флюенса нейтронов на ОС ВВЭР-440 сформулированы следующим образом:

- Методика должна учитывать особенности нейтронно-дозиметрического сопровождения штатной программы ОС в т.ч. то, что основным источником экспериментальных данных являются  результаты измерения удельной активности 54Mn в материале образцов;

- При определении флюенса нейтронов должна учитываться сложная история облучения образцов, в т.ч. изменение схемы загрузки активной зоны реактора в процессе облучения; возможное перемещение гирлянд с образцами в другой реактор; изменение спектра нейтронов в процессе облучения; изменение геометрии гирлянд с образцами в процессе облучения.

Требования, связанные с возможным изменением геометрии гирлянды при облучении и перестановкой образцов в каналы другого реактора, относятся в первую очередь к исследовательским программам.

В соответствии со сформулированными требованиями была разработана процедура, в основе которой лежат результаты измерения активности 54Mn каждого ОС и результаты нейтронного расчета, проводимого индивидуально для каждой кампании, в течение которой облучались исследуемые образцы.

Расчетное значение плотности потока нейтронов с энергией E>3,0 МэВ, усредненное по топливным циклам, в течение которых проводилось облучение, для каждого образца, облучавшегося в канале ОС, может быть получено по формуле:

  (1)

где:

hi – аксиальная координата ОС в канале, в котором образец облучался в течение i-го топливного цикла;

  – расчетное значение плотности потока нейтронов, воздействовавших на образец в течение i-го топливного цикла, см-2с-1;

  – продолжительность i-ого топливного цикла, эфф. суток.

Тогда относительная плотность потока нейтронов (hi), нормированная на , для каждого топливного цикла i, в течение которого облучался образец, находится по соотношению:

  (2)

Расчетно-экспериментальное значение плотности потока нейтронов с энергией E>3,0 МэВ, усредненное по всему периоду облучения образца, рассчитывается по формуле

 (3)

где:

  – измеренная удельная активность изотопа 54Mn в образце на момент конца облучения, Бк/ядро;

σ>3.0 – интегральное сечение реакции 54Fe(n,p)54Mn;

Ki – фактор, учитывающий историю облучения в топливном цикле i:

  (4)

Pk – тепловая мощность реактора в интервале времени k топливного цикла i;

Δtk длительность интервала времени k топливного цикла i;

tk – окончание интервала времени k топливного цикла i;

teoi –окончание облучения;

λ – постоянная распада изотопа 54Mn;

Расчетно-экспериментальные значения  плотности потока нейтронов с энергией E>3.0 МэВ, воздействовавших в i –том топливном цикле на образец, можно теперь получить в виде:

.  (5)

Таким образом, значение флюенса нейтронов с энергией E>0,5 MeV Φ>0.5 для образцов, облучавшихся в течение M топливных циклов, равно

  (6)

где SI0,5/3.0(hi )- спектральный индекс в канале ОС в положении h в топливном цикле i.

Значение спектрального индекса SI0.5/3.0, используемое в процедуре переоценки флюенса, является расчетным, и при его получении необходим подробный учет геометрии внутрикорпусных устройств реактора, канала ОС и контейнеров с образцами.

Таким образом, можно выделить следующие основные этапы процедуры переоценки флюенса на ОС реактора ВВЭР-440:

1) Измерение относительной активности изотопа 54Mn в области надреза каждого образца. Отбор проб металла от нескольких образцов, измерение их активности и определение абсолютных значений активности 54Mn – в образцах.

2) Проведение нейтронных расчетов для каждого топливного цикла, в течение которого облучались образцы. В результате расчета для каждого контейнера с образцами, в зависимости от его положения в канале, получаются значения величин, , .

3) Определение расчетно-экспериментальных значений плотностей потока и флюенса нейтронов, воздействовавших на каждый образец, по соотношениям (1-6).

Очевидно, что приведенные выше рассуждения могут быть применены для определения флюенса нейтронов на ОС, облучавшихся в каналах ВВЭР‑440, не только по активности 54Mn, но и по другим дозиметрическим реакциям на быстрых нейтронах, в зависимости от имеющихся экспериментальных данных. При этом одной из задач, необходимых для внедрения предложенного подхода при определении флюенса быстрых нейтронов на ОС ВВЭР-440, является корректный расчет параметров нейтронного поля в каналах ОС.


На главную