Молекулярные спектры

Курсовые по энергетике
БН
Экология
Карта

Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Решение этого уравнения - очень сложная задача, которая обычно разбивается на две: для электронов и ядер. Для приближенного решения задачи используют адиабатическое приближение, согласно которому квантово-механическая система разделяется на тяжелые и легкие частицы — ядра и электроны. Так как массы и скорости этих частиц сильно различаются, то считается, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле электронов. Следовательно, в адиабатическом приближении уравнение Шредингера для молекулы распадается на два уравнения — для электронов и ядер.

О периодической системе элементов Д.И. Менделеева. В основе систематики заполнения электронных состояний в атомах лежит принцип Паули. Это позволяет объяснить Периодическую систему элементов Д.И. Менделеева (1869) — фундаментальный закон природы — основу современной химии, атомной и ядерной физики. Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома. Процесс застройки первых 22-х элементов периодической системы представлен в таблице 13.3. Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е) и добавлением одного электрона, который помещают в разрешенное принципом Паули состояние с наименьшей энергией. Так, третий элемент (литий) имеет, кроме заполненной K-оболочки, один электрон в подоболочке 2s.

Характеристические рентгеновские спектры. Рентгеновские спектры, возникающие при бомбардировке электронами антикатода рентгеновской трубки, бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Вид этих спектров не зависит от материала антикатода.

Магнитный момент атома. Опыт Штерна и Герлаха Орбитальный магнитный момент. В квантовой теории магнитный момент μ и механический момент М атома следует заменить операторами  и :

Атом во внешнем магнитном поле. Эффект Зеемана Расщепление в магнитном поле энергетических уравнений атомов, приводящее к расщеплению спектральных линий в спектрах, называют эффектом Зеемана. Различают эффект Зеемана: нормальный (простой), когда каждая линия расщепляется на три компонента, и аномальный (сложный), когда каждая линия расщепляется на большее, чем три, число компонентов. Эффект Зеемана характерен для атомов парамагнетиков, так как только эти атомы обладают отличным от нуля магнитным моментом и могут взаимодействовать с внешним магнитным полем.

Распределение Ферми - Дирака Рассмотрим идеальный ферми-газ, т. е. систему, состоящую из N фермионов (например, электронов), заключенных в сосуд с неизменяющимся объемом. Найдем число Ω способов, которыми эти N фермионов могут быть размещены по Z ячейкам. (Очевидно, что должно выполняться условие Z ≥ N; при Z = N фермионы могут быть размещены по ячейкам только одним способом.) Каждый способ размещения представляет собой микросостояние системы частиц. Следовательно, Ω есть не что иное, как статистический вес макросостояния системы.

Распределение Бозе - Эйнштейна Перейдем к выводу закона распределения для идеального бозе-газа, т. е. системы практически не взаимодействующих бозонов. Вначале решим вспомогательную задачу. Возьмем N неразличимых частиц, помещенных в некоторый длинный ящик (пенал). Разделим этот ящик с помощью Z — 1 перегородок на Z ячеек (рис. 14.1) и найдем число способов, которыми частицы могут быть размещены по ячейкам, независимо от числа частиц в каждой ячейке.

Фотонный газ Предположим, что излучение, находящееся в равновесии со стенками полости, в которой оно заключено, можно представить как идеальный фотонный газ. Фотоны являются бозонами, т.к. спин фотона равен единице. Стенки полости непрерывно излучают и поглощают фотоны. Поэтому число фотонов не является наперед заданным (оно определяется объемом полости и температурой ее стенок). Из непостоянства числа фотонов вытекает, что их распределение по состояниям описывается формулой

Фононы. На примере задачи о гармоническом осцилляторе ранее было установлено, что колебательная энергия квантуется. Это приводит к тому, что средняя энергия колебания оказывается отличной от kТ. Энергия гармонического осциллятора может иметь значения

Модель Дебая В этой модели, как и в модели Эйнштейна, рассматривается изотропная среда, но учитывается дисперсия упругих волн.

Теплоемкость фононного газа Применив к фононному газу распределение Бозе-Эйнштейна, можно получить выражение для энергии колеба­ний кристаллической решетки, а следовательно, и для теплоемкости кристаллов. Число фононов непостоянно (они могут возникать и исчезать). Поэтому надо взять распределение Бозе-Эйнштейна в виде (14.17). Вычисление энергии кристалла, т. е. энергии фононного газа, аналогично приведенному для фотонного газа.

Электронный газ и его некоторые свойства В приближении свободных электронов электроны рассматриваются как идеальный газ. Металлический образец представляет собой для электронов трехмерную потенциальную яму. Реше­ние уравнения Шрёдингера для частицы, находящейся в такой яме, показывает, что энергия частицы может иметь только дискретные (квантованные) значения. Электроны являются фермионами (их спин равен 1/2); поэтому распределение электронов по энергетическим уровням описывается функцией распределения Ферми-Дирака

Температура Ферми для металлов составляет несколько десятков тысяч кельвин. Поэтому даже при температуре, близкой к температуре плавления металла (порядка 103 К), электронный газ в металле является вырожденным. В полупроводниках концентрация свободных электронов оказывается много меньшей, чем в металлах. Соответственно уровень Ферми мал (согласно (14.49) ε F пропорционально n 2/3 ). Поэтому уже при комнатной температуре электронный газ во многих полупроводниках является невырожденным и подчиняется классической статистике.

Разрешенные и запрещенные электронные энергетические зоны в кристаллах Рассмотрим мысленно «процесс образования» твердого тела из изолированных атомов одного типа. Энергетические уровни какого-либо валентного электрона в одном изолированном атоме представлены на схематическом рис. 14.7 а. Для простоты будем считать их простыми, т. е. невырожденными. Рассмотрим теперь N тождественных атомов, удаленных друг от друга настолько далеко, что их взаимодействием можно полностью пренебречь.

Функции Блоха и зоны Бриллюэна Зонная структура энергетических уровней получается непосредственно из решения уравнения Шрёдингера для электрона, движущегося в периодическом силовом поле.

Электроны в кристаллах Электропроводность металлов Квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Согласно корпускулярно-волновому дуализму, движению электрона сопоставляют волновой процесс.

тор гидра
На главную