ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Примеры решения задач

Пример 2. Длина волны λm , на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Опре­делить максимальную спектральную плотность энергетической светимости (Mλ,T)max , рассчитанную на интервал длин волн ∆λ=1нм, вблизи λm.

Решение. Максимальная спектральная плотность энергетической светимости пропорциональна пятой степени температуры Кельвина и выражается формулой

(Mλ,T)max = СТ5. (1)

Температуру Т выразим из закона смещения Вина λm =b/Т, откуда Т=b/λт

Подставив полученное выражение температуры в формулу (1), найдем

(Mλ,T)max=C(b/λm)5,

Пример. В цилиндре под поршнем находится водород массой m=0,02 кг при температуре T1=300K. Водород начал расширяться адиабатно, увеличив свой объем в пять раз, а затем был сжат изотермически, причем объем газа уменьшился в пять раз. Найти температуру Т2, в конце адиабатного расширения и работу А, совершенную газом. Изобразить процесс графически.

В табл. 24 значение С дано в единицах СИ, в которых единичный интервал длин волн ∆λ=1 м. По условию же задачи требуется вы­числить спектральную плотность энергетической светимости, рас­считанную на интервал длин волн 1 нм, поэтому выпишем значение С в единицах СИ и пересчитаем его на заданный интервал длин волн: Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

С=1,30*10-5 Вт/(м3К5)=1,30*10-5 Вт/(м2*м*K5) =

=1,30*10-14 Вт/(м2*нм*К5).

Вычисление по формуле (2) дает

(rλ,T)max=40,6 кВт/(м*нм).

лны λ=600 нм.


На главную