Ядерная физика
Электротехника
АЭС России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
БН
Атомные батареи
Термоядерный реактор
Ядерное оружие
Экология
Ядерные двигатели
Тепловая энергетика
Системы контроля
Карта

Преобразование солнечной радиации в электрический ток

 К концу XX столетия человечество разработало и освоило ряд принципов преобразования тепловой энергии в электрическую энергию. Их можно условно разделить на машинные и безмашинные методы. Последние часто называют методами прямого преобразования энергии, поскольку в них отсутствует стадия преобразования тепловой энергии в механическую работу.

Среди машинных преобразователей наиболее известны паро- и газотурбинные установки, в течение столетия работающие на всех наземных тепловых и атомных электростанциях. Пригодны они и для работы в космосе, но в этом случае необходим специальный теплообменник — излучатель, выполняющий роль конденсатора пара. При этом если в наземной паротурбинной установке теплота конденсации отводится циркулирующей водой, то в условиях космоса отвод тепла отработавшего в турбине пара или газа (если это газовая турбина) возможен только излучением. Поэтому энергоустановка должна быть замкнутой. Принципиальная схема замкнутой газотурбинной установки (ЗГТУ) показана на рис. 2а. Здесь солнечная радиация, собранная концентратором 1 на поверхности солнечного котла 2, нагревает рабочее тело — инертный газ до температур порядка 1200-1500 кельвинов и под давлением, создаваемым компрессором 3, подает горячий газ на лопатки газовой турбины 4, приводящей в действие электрогенератор переменного тока 5. Отработавший в турбине газ поступает сначала в регенератор 6, где подогревает рабочий газ после компрессора, облегчая тем самым работу основного нагревателя — солнечного котла, а затем охлаждается в холодильнике - излучателе 7. Как показали наземные испытания трехкиловаттной газотурбинной установки, проведенные в 1977 году на пятиметровом фацетном параболическом концентраторе в Физико-техническом институте АН Узбекистана, установки такого типа весьма маневренны, выход на номинальные обороты (36000 об/мин) занимал не более 1 мин с момента наведения солнечного пятна на полость цилиндрического котла. КПД этой установки составил 11%.

 Может показаться, что для солнечных энергоустановок, использующих бесплатную энергию, величина КПД не столь существенна, как для традиционных тепловых машин на органическом топливе. Однако это не так, ибо размеры и вес наиболее громоздких и тяжелых частей солнечных космических энергоустановок — концентратора и холодильника - излучателя – зависят, прежде всего, от КПД установки.

Возможно создание энергоустановки с паротурбинным преобразователем (рис. 2б).

Здесь собранная концентратором 1 солнечная энергия нагревает в солнечном котле 2 рабочую жидкость, переходящую в насыщенный, а затем и в перегретый пар, который расширяется в турбине 4, соединяющей с электрогенератором 5. После конденсации в холодильнике-излучателе 7 отработавшего в турбине пара его конденсат, сжимаемый насосом 8, вновь поступает в котел. Поскольку подвод и отвод тепла в этой установке осуществляются изотермически, средние температуры подвода и отвода оказываются выше, чем в газотурбинной установке (при одинаковых температурах подвода тепла), а удельные площади излучателя и концентратора могут оказаться меньше, чем в ЗГТУ.

Общим же недостатком всех машинных преобразователей является наличие в них вращающихся частей, что создает проблемы с поддержанием неизменной ориентации станции. Кроме того, из-за использования в качестве рабочего тела газа или пара необходима специальная защита излучателя от пробоя метеоритами.


Потолки цены установка здесь.
цены пластиковых окон в москве
Натяжные потолки установка еще на сайте.
готовые окна пвх цены.
На главную