Физика ядерного реактора

Физика
Элементы квантовой механики
Молекулярные спектры
Полупроводники
Ядерная физика конспект
Решение задач по ядерной физике
Физика атомного ядра и частиц
Примеры решения задач
Оптическая физика
Физика элементарных частиц
Законы радиоактивного распада
Задачи по теме Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Задачи на ядерные реакции
Деление и синтез ядер
Кинематика примеры задач
Электротехника
Общий курс
Теоретические основы электротехники
Расчет электрической цепи
Трехфазные цепи
Электрические машины и трансформаторы
Электрические двигатели и генераторы
Математика
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Атомная энергетика
АЭС России
Развитие энергетики России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
Атомные реакторы на быстрых нейтронах
Физика ядерного реактора
Аварийные ситуации на АЭС
Повышение безопасности АЭС
Проблема снижения выбрасов АЭС
Системы контроля на атомной станции
Экологическая политика
Атомные батареи
Ядерные двигатели
Авария на ЧАЭС
Термоядерный синтез
Термоядерный реактор
Тепловая энергетика
Паровой котел
Тепловые станции
Системы теплоснабжения
Экологические проблемы в теплоэнергетике
Экологический аспект
Электрофильтры
Регенеративные методы
Математическое моделирование экологических систем
Ядерное оружие
Полигон Новая земля
История создания
Информатика
Архитектура ЭВМ
Операционная система
Вычислительные комплексы
Начертательная геометрия
Курс лекций
Практикум по решению задач
Геометрическое черчение
Инженерная графика
Каталог графических примеров

 

Физика ядерного реактора

Классификация нейтронов. В ядерных реакциях, образуются, как правило, быстрые нейтроны (с энергией 0,1-1МэВ). Быстрые нейтроны при соударениях с атомными ядрами теряют энергию большими порциями, расходуя её, главным образом, на возбуждение ядер или их расщепление. В результате энергия нейтрона становится меньше минимальной энергии возбуждения ядра (от десятков КэВ до нескольких МэВ в зависимости от свойств ядра). После этого рассеяние нейтрона ядром становится упругим, т.е. нейтрон расходует энергию на сообщение ядру скорости без изменения его внутреннего состояния.

Упругое рассеяние нейтронов на ядрах атомов мишени. Для элементов с низким атомным номером первый возбуждённый уровень ядра обычно на 1МэВ выше основного состояния. Поэтому в случае лёгких элементов упругое рассеяние нейтронов с En< 1МэВ более вероятно, чем неупругое рассеяние.

Изотопные источники - устройства, в которых идут ядерные реакции собразованием нейтронов. При этом излучение, испускаемое радионуклидом (например, а-частицы) вступает в ядерную реакцию со специально подобранным веществом (например, бериллием), в результате которой образуются нейтроны.

Ядерные реакции (), (), (), (). Захват нейтронов ядрами (М) с зарядовым числом Z и массовым числом А часто приводит к ядерным реакциям, в результате которых возникает явление искусственной радиоактивности.

Энергия отделения нейтрона. Ядро – система связанных нуклонов и чтобы его разделить на составные части (нуклоны) надо затратить энергию связи ядра W(A,Z)

Эффект спаривания нуклонов

Механизм деления. Если деление выгодно для ядра с Z2/A>17, т.е. с А≥90, то возникает вопрос: почему же большинство известных тяжёлых ядер устойчиво по отношению к спонтанному делению? В ходе деления ядро проходит через стадии: шар, эллипсоид, гантель, 2 грушевидных осколка, 2 сферических осколка. Изменение энергии ядра на разных стадиях определяется изменением суммы поверхностной и кулоновской энергий начального ядра и осколков. При увеличении расстояния между центрами осколков (при делении 23692U из основного состояния на 2 асимметричных осколка) от начального значения r=0. Эта сумма сначала растёт, а затем уменьшается.

Поглощение электромагнитного излучения в веществе. Рассмотрим взаимодействие с веществом рентгеновских и γ-лучей, т.е. электромагнитных излучений с очень короткими длинами волн, которые способны глубоко проникать в вещество и производить при этом ионизацию. Для краткости здесь будем говорить только о γ-квантах. Поскольку основной ионизационный эффект обуславливается взаимодействием с веществом частиц, возникающих в ходе первичного поглощения и рассеяния γ-квантов, эти электромагнитные излучения относят к косвенно-ионизирующим.

Фотоэффект. Это процесс, при котором вся энергия падающего кванта hν передаётся связанному электрону. Его кинетическая энергия при вылете из атома Te = hν – I­i, где I­i – энергия связи той оболочки, на которой находится электрон. Энергию отдачи, полученную ядром при вылете электрона ,можно не учитывать, т.к. Tя << hν или Tя << Te. Фотоэффект всегда сопровождается либо характеристическим излучением, либо эффектом Оже, когда энергия возбуждения атома передаётся одному из его электронов, который и покидает атом.

В общем, поглощение быстро уменьшатся с возрастанием энергии. Однако каждый раз, как только энергия γ-квантов становится больше энергии, необходимой для ионизации электронов следующей более глубокой оболочки, поглощение скачком возрастает. После того как энергия γ-квантов стала больше энергии связи электронов К-оболочки, скачков больше не наблюдается. В этом случае γ-кванты (до 80%) поглощаются электронами К-оболочки, т.е. наиболее сильно связанными.

Рождение электронно-позитронных пар. При достаточно большой энергии γ-кванта становится возможным процесс, когда в одном акте взаимодействия возникают в поле какой-нибудь частицы (чаще всего ядра атома) электрон и позитрон, а квант при этом поглощается. Этот процесс около ядра происходит в области размером ~ комптоновской длины волны электрона.

Формула Резерфорда. Волны де Бройля. Опыты Хофштадтера. Формула Мотта. Форм-фактор. К заряженным частицам относятся электроны, протоны, дейтоны, a-частицы, положительные и отрицательные мезоны и гипероны, ядра (ионы) тяжелых элементов. Взаимодействие этих частиц с электронами, атомами, ядрами среды происходит через кулоновские, электромагнитные и ядерные силы. Поэтому число различных процессов взаимодействия достаточно велико. Основными механизмами взаимодействия заряженных частиц с веществом являются электромагнитное взаимодействие с электронами вещества (ионизация), а также внутриядерные взаимодействия с нуклонами ядра.

Ионизационное торможение заряженных частиц. Уравнение Бете-Блоха. Поскольку действие -излучения и нейтронов скорее результат воздействия вторичного излучения, т.е. электронов и протонов отдачи, чем результат их первичных взаимодействий, данные, полученные при изучении взаимодействия заряженных частиц с веществом, можно использовать не только для описания действия быстрых электронов или ионов, но также и для описания воздействия -излучения и нейтронов.

Пробег заряженных частиц в веществе. -электроны. В пучке электронов даже при одинаковой их начальной энергии различные частицы по-разному углубляются в толщу вещества. Это связано с их рассеянием. Лишь некоторые электроны могут пройти весь путь в одном направлении. Минимальная толщина поглотителя, необходимая для полного поглощения энергии заряженной частицы, называется линейным пробегом (). Среднее значение модуля вектора между началом и концом пробега заряженной ионизирующей частицы в данном веществе называется средним линейным пробегом ().

Упругое рассеяние заряженных частиц на ядрах. Ядерное взаимодействие. При пролёте заряженной частицы вблизи ядра передача энергии ядру за счёт кулоновских сил будет невелика. Траектория частицы будет заметно отличаться от прямолинейной, но приближённо и в этом случае можно пользоваться выражением Бете-Блоха (с тем отличием, что mч < Mя, передаваемый ядру импульс будет в Zя раз больше. Zяe – заряд ядра; Ze – заряд падающей частицы; Mя = A ∙ mp).

Излучение Вавилова-Черенкова. Невелики и потери энергии на световое излучение Вавилова-Черенкова, которое возникает при движении заряженной частицы в среде со скоростью, превышающей скорость света в этой среде. Заряженная частица, двигаясь внутри диэлектрика с постоянной скоростью, создаёт вдоль своего пути локальную поляризацию его атомов. Сразу же после прохождения частицы поляризованные атомы возвращаются в исходное состояние и излучают электромагнитные волны. При определённых условиях эти волны складываются и наблюдается излучение.

Это самопроизвольное испускание лептонов ().

Эффективная эквивалентная доза. Единицы измерения. Определение активности. Единицы активности. Активностью А некоторого количества радиоактивного вещества называют число спонтанных ядерных превращений в этом количестве вещества dN, происшедших за интервал времени dt:

Экспозиционная доза (Dэксп) – это количественная характеристика фотонного излучения, которая основана на его ионизирующем действии в сухом атмосферном воздухе. Она определяется отношением суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны, освобожденные фотонами в элементе объема воздуха с массой dm, полностью остановились в воздухе, к массе воздуха в этом объеме: .

Эквивалентная доза. Относительная биологическая эффективность (ОБЭ). Коэффициент качества излучения. Единицы эквивалентной дозы. Для оценки биологического эффекта воздействия излучения произвольного состава потребовалось введение новой характеристики дозы. В задачах радиационной безопасности при облучении в малых дозах (меньше ~0,1 Гр) это эквивалентная доза с единицей измерения в СИ – зиверт (Зв). Зиверт – единица эквивалентной дозы любого вида излучения в биологической ткани, которое создаёт такой же биологический эффект, как и поглощённая доза в 1 Гр образцового рентгеновского излучения (излучение с граничной энергией 200 КэВ).

Эффективная эквивалентная доза. Единицы измерения. Международная комиссия по радиационной защите (МКРЗ) ввела в качестве меры радиационного воздействия на живой организм эффективную эквивалентную дозу (Нэф), которая определяется формулой: , где -средняя эквивалентная доза в органе или ткани организма (Т),  - взвешивающий коэффициент (коэффициент риска), равный отношению вероятности возникновения стохастического эффекта при облучении органа или ткани Т к вероятности его возникновения. при равномерном облучении всего тела.  определяет вклад данного органа в риск неблагоприятных стохастических эффектов для организма в целом при равномерном его облучении.

Газовые счётчики. Газовый счётчик представляет собой датчик (по конструкции аналогичный ионизационной камере), предназначенный для регистрации отдельных ядерных частиц. В отличие от ионизационных камер в газовых счётчиках для усиления ионизационного тока используется газовый разряд. Благодаря высокой чувствительности газовый счётчик реагирует на каждую частицу, возникшую внутри объёма газа, или проникшую в него из стенки счётчика.

Сцинтилляционный метод дозиметрии. Схема сцинтилляционного дозиметра состоит и сцинтиллятора, световода, фотоэлектронного умножителя (ФЭУ) и электронной регистрирующей системы. Излучение, взаимодействуя с веществом сцинтиллятора, вызывает образование в нём электронов, которые возбуждают атомы сцинтиллятора. Переход возбуждённых атомов в основное состояние сопровождается излучением фотонов. Свет через световод попадает на фотокатод ФЭУ.

Химическая дозиметрия. Некоторые недостатки ионизационных и калориметрических методов дозиметрии (трудности в поддержании режима тока насыщения и ухудшение свойств изоляции электродов при измерении больших мощностей доз или недостаточная чувствительность при определении дозиметрических характеристик низкоинтенсивных излучений) привели к необходимости разработки химических методов дозиметрии, использующих иные принципы.

Дозиметрическая и радиометрическая аппаратура. Детекторами являются сцинтилляционные и пропорциональные счётчики, счётчики Гейгера-Мюллера (в том числе и 4π-счётчики, в которых радиоактивный источник со всех сторон окружён рабочим объёмом счётчика; если источник газообразный, он помещается в рабочий объём газового счётчика), ионизационные камеры, полупроводниковые счётчики и фотопластинки (фотоплёнки).

Закономерности формирования радиоактивного загрязнения территории Республики Беларусь. Основные уровни загрязнения почвы в результате глобальных выпадений на территории РБ сформировались в середине 70-х годов после интенсивных ядерных испытаний, когда плотность годовых выпадений плутония достигла максимальных значений: 10 – 15 Бк.

Радионуклиды в организме человека.

Формирование дозы излучения инкорпорированных радионуклидов. Рассмотрим случай однократного (мгновенного) поступления радиоактивного вещества в одно из входных депо.

Кинетика формирования дозы. Рассмотрим влияние фактора времени на формирование поглощённой дозы от излучения инкорпорированных радионуклидов.

Масса и энергия связи ядра Измерения показывают, что масса любого ядра mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: mя < Zmp + Nmn. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.

Степень опасности радионуклидов как источников внутреннего облучения оценивают обычно путём контроля из содержания в объектах внешней среды – в воздухе, воде, продуктах питания. Количество попадающих в организм радионуклидов – величина очень трудно контролируемая. Поэтому рассчитаны ДК радионуклидов для тех сред, с которыми они могут поступить в организм человека и которые можно контролировать. Важнейшие из них – воздух и вода. ДК радионуклидов в продуктах питания могут быть рассчитаны по тем же формулам, что и для ДК радионуклидов в воде.

Расчёт допустимого содержания (ДС) любых радионуклидов по допустимой дозе облучения критического органа. При равновесном, т.е. неизменяющемся за период определения) содержании нуклида в организме или критическом органе ДС в организме (q) или в критическом органе (qf2) можно определить из значения предельно допустимой эквивалентной дозы – Dэкв (бэр/неделя), которую излучение этих радионуклидов создаёт

Расчет ДК основанный на дозе облучения желудочно-кишечного тракта (ЖКТ). Для малорастворимых соединений критическим органом при пероральном поступлении (с водой, пищей) часто оказывается ЖКТ, при ингаляционном поступлении (с воздухом) – лёгкие.

Физика атомного ядра и элементарных частиц Атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов. Сразу же после открытия нейтрона (Дж. Чедвик, 1932 г.), Д.Д. Иваненко и В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами.

Ядерные силы Основные свойства ядерных сил Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы притяжения между нуклонами в сотни раз превосходят электромагнитные силы отталкивания. Перечислим отличительные особенности этих сил.

Модели ядер В теории атомного ядра важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра.

Закон радиоактивного распада Рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Основные типы радиоактивности Альфа-распад. Альфа-лучи представляют собой поток ядер гелия .

Эффект Мёссбауэра Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е

Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ-квантами) или друг с другом. Это взаимодействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10-13 см.

Энергия реакции Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Это надо понимать так. Пусть Е0 и Е'0 — суммы энергий покоя исходных частиц и продуктов реакции.

Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами

Цепная ядерная реакция При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

На главную