Канальный кипящий графитовый реактор Реакторы водо-водяного типа Реакторы на быстрых нейтронах Задачи по физике ядра Испытания ядерного оружия

Эффект Мёссбауэра

Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е*. Переходя в основное состояние, возбужденное ядро испускает γ-квант с энергией ħω и импульсом ħω / с, удовлетворяющим законам сохранения:

(16.27)

где К — энергия отдачи ядра. Из этих уравнений следует, что

(16.28)

здесь т — масса ядра.

Согласно первой из формул (16.27) энергия γ-кванта ħω сдвинута относительно энергии Е* ядерного перехода на величину К — энергию отдачи ядра. Поэтому γ-квант сможет поглотиться другим ядром только при условии, что сдвиг

(16.29)

где Г — ширина возбужденного уровня Е*. Электроэнергия, вырабатываемая дочерними АО-электростанциями РАО «ЕЭС России», поставляется подавляющей части потребителей только через сети АО-энерго.

Выясним, насколько выполняется соотношение (16.29). Например, ядро  при переходе из первого возбужденного состояния испускает γ-квант с энергией ħω ≈ 14 кэВ. При этом его энергия испытывает сдвиг на величину

Ширина же Г первого возбужденного уровня, время жизни которого τ ~ 10-7 с, согласно соотношению неопределенностей ∆Е ·∆t ~ ħ равна

(16.30)

Таким образом, сдвиг К не меньше Г, а наоборот, больше на пять порядков, что далеко перекрывает возможность резонансного поглощения. Известно, что атомы наиболее интенсивно поглощают свет частоты, соответствующей переходу из основного состояния атома в ближайшее к нему возбужденное состояние. Это явление называют резонансным поглощением. Другими словами, фотоны, испущенные атомом при переходе из первого возбужденного состояния в основное, без всяких проблем поглощаются такими же атомами, поскольку их частоты практически совпадают. В рассмотренном выше примере для ядра условия далеки от резонансного поглощения.

И тем не менее явление резонансного поглощения γ-лучей было обнаружено Мёссбауэром (1958) . Это оказалось возможным только с ядрами, входящими в состав кристалла. При этом существует вероятность испускания γ-кванта ядром с отдачей, которую воспринимает не ядро, а весь кристалл в целом, не меняя своего внутреннего состояния (т. е. без возбуждения колебаний решетки). Масса кристалла несопоставимо велика по сравнению с массой отдельного ядра, поэтому энергия отдачи кристалла практически равна нулю. В результате частота испущенного γ-кванта не смещается относительно резонансного значения, и этот γ-квант может быть поглощен другим таким же ядром, тоже входящим в состав кристалла.

В этом заключается суть эффекта Мессбауэра: испускание и поглощение γ-квантов без отдачи, т. е. резонансное. Этот эффект удается наблюдать только при очень низких температурах, но иногда и при комнатных температурах (в случае с Fe).

Эффект Мессбауэра наблюдают так. Источник γ-излучения приводят в движение с небольшой

Рис. 16.6.

 

скоростью υ навстречу поглотителю или в обратном направлении. При этом измеряют скорость счета γ-квантов за поглотителем. Если υ ≠ 0, то резонанс нарушается: линии испускания и поглощения сдвигаются относительно друг друга за счет эффекта Доплера. При υ = 0 наблюдается резонансное поглощение γ-квантов, что показано на рис. 16.6.

Благодаря очень малому отношению ширины Г возбужденных ядерных уровней к энергии возбуждения Е* (Г/Е* ~ 10-12 ÷ 10-16) эффект Мессбауэра дает уникальный метод измерения ничтожных изменений энергии, которые не могут быть измерены никаким другим методом.

В частности, с помощью этого эффекта удалось обнаружить в лабораторных условиях гравитационное смещение спектральных линий (уменьшение частоты фотона при удалении его от источника тяготения). Для этого надо было измерить относительное изменение энергии фотона порядка 10-15 на базе около 20 м, что впервые и проделали Паунд

и Ребка (1960).


На главную