Задачи на ядерные реакции

Эскорт - обобщенная услуга среди стабильных покупателей ночных бабочекАбакана http://prostitutkiabakana.date/eskort/, и если вы закажите непосредственно эту услугу, то одержите испанскиймассаж даром.|Ветка сакуры - одна из услуг, которые устраивают шаловливые блудницыСтаврополя http://prostitutkistavropolya.date/vetka-sakuri/, и если вы выберите эту услугу, то на пятую одержите поощрение, а также бонусное предложение на вечер.

Физика
Элементы квантовой механики
Молекулярные спектры
Полупроводники
Ядерная физика конспект
Решение задач по ядерной физике
Физика атомного ядра и частиц
Примеры решения задач
Оптическая физика
Физика элементарных частиц
Законы радиоактивного распада
Задачи по теме Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Задачи на ядерные реакции
Деление и синтез ядер
Кинематика примеры задач
Электротехника
Общий курс
Теоретические основы электротехники
Расчет электрической цепи
Трехфазные цепи
Электрические машины и трансформаторы
Электрические двигатели и генераторы
Математика
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Атомная энергетика
АЭС России
Развитие энергетики России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
Атомные реакторы на быстрых нейтронах
Физика ядерного реактора
Аварийные ситуации на АЭС
Повышение безопасности АЭС
Проблема снижения выбрасов АЭС
Системы контроля на атомной станции
Экологическая политика
Атомные батареи
Ядерные двигатели
Авария на ЧАЭС
Термоядерный синтез
Термоядерный реактор
Тепловая энергетика
Паровой котел
Тепловые станции
Системы теплоснабжения
Экологические проблемы в теплоэнергетике
Экологический аспект
Электрофильтры
Регенеративные методы
Математическое моделирование экологических систем
Ядерное оружие
Полигон Новая земля
История создания
Информатика
Архитектура ЭВМ
Операционная система
Вычислительные комплексы
Начертательная геометрия
Курс лекций
Практикум по решению задач
Геометрическое черчение
Инженерная графика
Каталог графических примеров

 

 

Символическая запись ядерной реакции

Построение векторной диаграммы импульсов

Задача 3.1 Частица с кинетической энергией Тα = 1,0 МэВ упруго рассеялась на покоящемся ядре 6Li. Определить кинетическую энергию ядра отдачи, отлетевшего под углом φ = 30º к первоначальному направлению движения α-частицы.

Задача 3.2 Нерелятивистский дейтон упруго рассеялся на покоящемся ядре под углом 30º. Под таким же углом к направлению движения налетающего дейтона отлетело и ядро отдачи. Какому атому принадлежит это ядро?

Задача 3.3 Построить векторные диаграммы импульсов для упругого рассеяния нерелятивистской α-частицы на покоящемся ядре:

Задача 3.4 Какую долю η кинетической энергии теряет нерелятивистская α-частица при упругом рассеянии под углом 60º в СЦИ на покоящимся ядре 12С.

Задача 3.5 Найти энергию реакции 7Li(p, α)4He, если известно, что средняя энергия связи на один нуклон в ядрах 7Li и 4He равна соответственно 5,50 и 7,06 МэВ.

Из формулы (3.3) получаем выражение для вычисления энергии реакции

Задача 3.7 Вычислить пороговую кинетическую энергию налетающей частицы в реакции  p + 3H → 3He + n, если налетающей частицей является: а) протон; б) ядро трития (тритон).

Задача 3.8 Определить кинетическую энергию ядер 7Ве, возникающих в реакции p + 7Li → 7Be + n. Q = -1,65 МэВ.

Задача 3.9 Вычислить энергию реакции 14N(α, p)17O,  если энергия налетающих α-частиц Тα = 4 МэВ, а протон, вылетевший под углом 30º к направлению движения α-частицы, имеет энергию Тр = 2,08 МэВ.

Задача 3.10 Получить выражение (3.5) для импульса  частиц, возникающих в СЦИ в результате ядерной реакции (3.1), если энергия реакции Q, а энергия налетающей частицы а в ЛСК равна Та.

Задача 3.11 Определить кинетическую энергию ядер кислорода, вылетающих под углом 30º к направлению бомбардирующих протонов в реакции 14N(p,n)14О,  Q = -5,9 МэВ. Кинетическая энергия протонов 10 МэВ. Решение получить с помощью построенной в масштабе векторной диаграммы импульсов для ядерной реакции.

Задача 3.12 Найти максимальную кинетическую энергию α-частиц, возникающих в результате реакции 16O(d, α)14N, Q = 3,1 МэВ при энергии бомбардирующих дейтонов 2,0 МэВ.

Задача 3.13 Определить ширину энергетического спектра нейтронов, возникающих в реакции 11B(α, n)14N, Q = 0,30 МэВ, если кинетическая энергия бомбардирующих α-частиц равна 5,0 МэВ.

Задача 3.14 Найти максимально возможные углы вылета (в ЛСК) продуктов реакции 9Be(p,n)9B, Q = -1,84 МэВ, если Тр = 4,00 МэВ.

Задача 3.15 Найти пороговую энергию γ-квантов, при которой становится эндоэнергетическая реакция фоторасщепления покоящегося ядра массой М1, если энергия реакции равна Q.

Задача 3.16.Найти возможное значение спина основного состояния ядра 17О, возникающего в реакции срыва при взаимодействии дейтронов с ядрами 16О, если известно, что орбитальный момент захватываемых нейронов ln = 2. Сравнить результат со значением спина по оболочечной модели ядра.

Задача 3.17 Найти энергию возбуждения покоящегося ядра массой Мя, которую оно получит при захвате γ-кванта с энергией Еγ.

Задача 3.18 Определить энергию Евозб возбуждения ядра 4Не, возникшего в результате захвата протона с кинетической энергией 2,0 МэВ покоящимся ядром 3Н.

Задача 3.19 Какой минимальной кинетической энергией (Тn)min должен обладать нейтрон, чтобы в результате упругого рассеяния на ядре 9Ве сообщить последнему энергию возбуждения Евозб= 2,40 МэВ.

Задача 3.20 Найти кинетические энергии нейтронов, при которых сечения взаимодействия с ядрами 16О максимальны, если нижние уровни промежуточного ядра 17О соответствуют энергиям возбуждения 0,87; 3,00; 3,80; 4,54; 5,07 и 5,36 МэВ.

Задача 3.21 Определить среднее время жизни ядер, возникающих при захвате нейтронов ядрами 6Li, если известно среднее время жизни данных ядер по отношению к испусканию нейтронов и α-частиц: τn = 1,1·1020 с   и τα = 2,2·1020 с (других возможностей нет).

Задача 3.22 Найти плотность потока нейтронов на расстоянии 10 см от небольшого Ро-Ве–источника, содержащего 0,63·1010 Бк (0,17 Ки) 210Ро, если выход реакции 9Ве(α, n)12С равен 0,8·10-4.

Задача 3.23 Выход реакции (γ,n) при облучении медной пластинки толщиной d = 1,0 мм γ-квантами энергией 17 МэВ составляет Υ = 4,2·10-4. Найти сечение данной реакции.

Задача 3.24 Тонкую пластинку из 113Cd облучают тепловыми нейтронами, плотность потока которых 1,0·1012 с-1·см-2. Найти сечение реакции (n,γ), если известно, что через шесть суток облучения содержание ядер нуклида 113Cd  уменьшилось на 1%.

Задача 3.25 При облучении дейтонами с кинетической энергией 1 МэВ тонкой мишени из тяжелого льда выход и сечение реакции 2Н(d,n)3Не равны соответственно 0,8·10-5 и 0,020 мб. Определить сечение данной реакции для кинетической энергии дейтонов 2 МэВ, если выход в этом случае составляет 4,0·10-5.

Задача 3.26 При облучении толстой алюминиевой мишени пучком частиц с энергией 7,0 МэВ в результате реакции (α,n) испускается поток нейтронов 1,60·109 с-1. Найти выход и среднее сечение данной реакции, если ток α-частиц равен 50 мкА.

На главную