Ядерная энергетика

Физика
Элементы квантовой механики
Молекулярные спектры
Полупроводники
Ядерная физика конспект
Решение задач по ядерной физике
Физика атомного ядра и частиц
Примеры решения задач
Оптическая физика
Физика элементарных частиц
Законы радиоактивного распада
Задачи по теме Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Задачи на ядерные реакции
Деление и синтез ядер
Кинематика примеры задач
Электротехника
Общий курс
Теоретические основы электротехники
Расчет электрической цепи
Трехфазные цепи
Электрические машины и трансформаторы
Электрические двигатели и генераторы
Математика
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Атомная энергетика
АЭС России
Развитие энергетики России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
Атомные реакторы на быстрых нейтронах
Физика ядерного реактора
Аварийные ситуации на АЭС
Повышение безопасности АЭС
Проблема снижения выбрасов АЭС
Системы контроля на атомной станции
Экологическая политика
Атомные батареи
Ядерные двигатели
Авария на ЧАЭС
Термоядерный синтез
Термоядерный реактор
Тепловая энергетика
Паровой котел
Тепловые станции
Системы теплоснабжения
Экологические проблемы в теплоэнергетике
Экологический аспект
Электрофильтры
Регенеративные методы
Математическое моделирование экологических систем
Ядерное оружие
Полигон Новая земля
История создания
Информатика
Архитектура ЭВМ
Операционная система
Вычислительные комплексы
Начертательная геометрия
Курс лекций
Практикум по решению задач
Геометрическое черчение
Инженерная графика
Каталог графических примеров

 

Радиоактивное загрязнение окружающей среды. Анализ многолетней работы атомных электростанций свидетельствует о том, что благодаря многоступенчатым системам защиты практически полностью исключены выбросы радио­активных веществ в окружающую среду. Необходимо также отметить, что радиационное воздействие на окружающую среду при нормальной эксплуатации АЭС значительно ниже, чем у ТЭС, работающих на угле. Это связано с тем, что (как мы уже отмечали выше) концентрация ряда элементов, в том числе радиоактивных, в образующейся угольной золе значительно превосходит их содержание в литосфере. Но и эта доза излучения оказывается значительно ниже естественного радиационного фона Земли (табл. 15.9). Оценки показывают, что вклад ядерной энергетики в общую дозу облучения человека не превысит 1% даже при 40-кратном увеличении мощности ядерной энергетики.

Таблица15.9

Сравнительные дозы возможного облучения человека от различных источников

Источники облучения

Доза облучения, мбэр/год

Источники облучения

Доза облучения, мбэр/год

Естественный фон

110

Медицинская рентгенодиагностика

72

Строительные материалы

60

Глобальные выпадения радиоактивных веществ

2

Часы со светосоставом

1

Космические излучения при полётах на самолётах

До 0,5

ТЭС

410-3

АЭС

10-4

Одной из серьёзных проблем взаимодействия с окружающей средой при работе АЭС является переработка высокоактивного отработанного топлива. Безусловно, высокоактивные продукты деления, содержащиеся в ТВЭЛах, могут представлять серьёзную опасность для окружающей среды и человека. Однако, необходимо учитывать, что отработанные ТВЭЛы должным образом хранятся и находятся под строгим учётом. Это – контролируемая активность, попадание которой в окружающую среду можно избежать, что и подтверждается многолетним нашим и международным опытом.

15.6. Изменение климата и Киотский протокол

Климат меняется на наших глазах. Особенно резко это сказывается в Северном полушарии, где наблюдается активное таяние ледников, даже в Северном ледовитом океане. Изменение среднегодовой температуры (аномалии) приземного воздуха с 1886 по 2007 гг. в РФ представлено на рис. 15.16. Аномалии рассчитаны как отклонения от среднего за 1961-1990гг. Кривая линия соответствует 11-летнему скользящему осреднению. Прямой линией показан линейный тренд за 1976-2007гг.

 

 

Рис. 15.16. Аномалия среднегодовой (январь-декабрь) температуры приземного воздуха (0С), осредненные по территории РФ, 1886-2007гг.

Такие же изменения наблюдаются и в других регионах, что побудило мировое сообщество в 1992г. принять Рамочную Конвенцию об изменении климата, вступившую в силу в 1994г. (после ратификации большинством ее подписавших стран, в том числе и РФ).

На Третьей конференции об изменении климата в 1997 г. в Киото (древняя столица Японии) был принят заключительный протокол, который предусматривает общее сокращение выбросов «парниковых» газов в атмосферу на 5,2%. В соответствии с Киотским протоколом к 2008-2012 гг. страны Европейского союза сокращают выбросы «парниковых» газов на 8%, США на 7% (подписав соглашение они отказались его ратифицировать) и Япония на 6% от уровня 1990 г. Установлены потолки и для других промышленно развитых государств. Нам (РФ) разрешено к 2012 г. сохранить выбросы на уровне 1990 г. Россия ратифицировала конвенцию в 2004 г. и с этого времени она заработала. За превышение выбросов сверх разрешённых установлены санкции. Неиспользованные квоты выбросов можно продать.

 Особенность Киотского протокола и его значение в том, что он впервые предложил экономические механизмы по энергоэффективности и энергосбережению, и стимулировал разработку альтернативных методов получения энергии.

Для расчёта эмиссии углекислого газа были обоснованы и приняты национальные коэффициенты эмиссии, для РФ они представлены в табл. 15.10.

Таблица 15.10

Коэффициенты эмиссии СО2 для РФ

Вид топлива

Коэффициенты эмиссии

т СО2/т у.т.

т С/ТДж

Твёрдое топливо

Газообразное топливо

Мазут

2,76

1,62

2,28

25,68

15,07

21,22

Указанные в табл. 15.10 значения коэффициента эмиссии для твёрдого топлива получены с учётом структуры топливного ба­ланса отрасли и средних характеристик наиболее значимых видов топлива, данных по неполному сгоранию для различных видов угля при сжигании в котельных установках различной мощности, в том числе и в котлах малой производительности. Эти данные охватывают весь диапазон используемого в России котельного оборудования, поэтому приведенные коэффициенты должны быть рекомендованы для использования во всех отраслях промышлен­ности для расчёта эмиссии от установок, сжигающих органичес­кое топливо.

Ниже представлены данные по эмиссии СО2 от ТЭС РАО «ЕЭС России» (млн. т): 1990 г. – 708,5; 1994 г. – 542,5; 1997 г. – 493,0; 1998 г. – 486,5.

На главную