Ядерная энергетика

Физика
Элементы квантовой механики
Молекулярные спектры
Полупроводники
Ядерная физика конспект
Решение задач по ядерной физике
Физика атомного ядра и частиц
Примеры решения задач
Оптическая физика
Физика элементарных частиц
Законы радиоактивного распада
Задачи по теме Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Задачи на ядерные реакции
Деление и синтез ядер
Кинематика примеры задач
Электротехника
Общий курс
Теоретические основы электротехники
Расчет электрической цепи
Трехфазные цепи
Электрические машины и трансформаторы
Электрические двигатели и генераторы
Математика
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Атомная энергетика
АЭС России
Развитие энергетики России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
Атомные реакторы на быстрых нейтронах
Физика ядерного реактора
Аварийные ситуации на АЭС
Повышение безопасности АЭС
Проблема снижения выбрасов АЭС
Системы контроля на атомной станции
Экологическая политика
Атомные батареи
Ядерные двигатели
Авария на ЧАЭС
Термоядерный синтез
Термоядерный реактор
Тепловая энергетика
Паровой котел
Тепловые станции
Системы теплоснабжения
Экологические проблемы в теплоэнергетике
Экологический аспект
Электрофильтры
Регенеративные методы
Математическое моделирование экологических систем
Ядерное оружие
Полигон Новая земля
История создания
Информатика
Архитектура ЭВМ
Операционная система
Вычислительные комплексы
Начертательная геометрия
Курс лекций
Практикум по решению задач
Геометрическое черчение
Инженерная графика
Каталог графических примеров

 

Ещё одно из важнейших направлений использования солнечной энергии связано с живыми (в первую очередь растительными) организмами. Автотрофные организмы ежегодно ассимилируют в результа­те процесса фотосинтеза около 200 млрд. т углерода, превращая его в органические соединения. Общее энергосодержание образующейся при этом биомассы оценивается в 31021 Дж. Эта величина примерно в 10 раз превышает ежегодное мировое потребление энергии и в 200 раз больше энергосодержания ежегодно потребляемой человечеством пищи. Эффективность фотосинтеза с точки зрения трансформации солнечной энергии крайне низкая, в среднем 0,1% от теоретической (равной 15%). Однако имеются растения, которые используют 1 и даже 3% солнечной энергии (некоторые растения на севере). Так что имеются громадные возможности для селекционеров (Это ведь резерв пищи!). Общее количество энергии солнечного излучения, получае­мое поверхностью Земли за год, более чем в 20000 раз превышает современный уровень мирового производства энергии.

Доля растительной биомассы в мировом потреблении энергии пока сравнительно невелика и составляет примерно 8% от общего количества топлива, расходуемого в мире. Однако для развивающихся стран биомасса растений, т.е. дрова и сжигаемые отходы сельского и лесного хозяйства, чрезвычайно важны и в настоящее время являются основными источниками получения энергии. В развивающихся странах на долю биологических источников энергии (в основном дрова) приходится 68% получаемой энергии, в странах Дальневосточного региона (за исключением Японии) – 50%. В странах Европейского экономического сообщества растительная биомасса служит источником 1% получаемой энергии, что эквивалент­но, однако, расходу примерно 100 млн. т нефти в год. К концу ХХ века в этих странах было намечено увеличить долю энергии, получаемой из биомассы, до 5%. В США доля энергии, получаемой из топлива расти­тельного происхождения, составляет 3% от общего баланса производства энергии и неуклонно увеличивается.

Возросший интерес к растительным источникам топлива в развитых странах связан не только с удорожанием нефти и продуктов её переработки, но и с ростом коэффициента полезного ис­пользования энергии в дровяных печах. Совершенствование конструкций печей позволило увеличить КПД их использования до 30-80%. Одна­ко при этом резко возросла их стоимость, поэтому в развивающихся странах до настоящего времени пользуются в основном печами старых образцов, имеющих КПД 6-8%.

Сжигание растительного топлива в бытовых печах – далеко не единственный способ переработки биомассы, синтезируемой или образующейся в результате жизнедеятельности живых организмов (табл. 15.2). Перспективы использования тех или иных способов переработки биомассы по-разному оцениваются в различных странах и оп­ределяются климатическими условиями и доступностью других источников энергии. В целом в ряде стран: Австралии, Бразилии, Китае, Индии, РФ, США и других разрабатываются специальные правительственные программы по использованию биомассы в качестве источника энергии. Например, в Бразилии, в настоящее время около 28% всей производимой энергии вырабатывается из биомассы. В основном, это биомасса сахарного тростника, из которой в результате микробиологических превращений получают этило­вый спирт. Ежегодно в этой стране получают 6-7 млрд. л спир­та, используемого как горючее, в первую очередь, для автомобилей. В этом качестве этанол обладает большим преимуществом перед бензином: у него весьма высокое октановое число, благодаря чему отпадает необходимость этилирования – добавления в горючее токсичных компонентов (в частности, тетраэтилсвинца).

В настоящее время в США и Европе активно налаживается производство этилового спирта для автомобилей из зерна. Аналогичное производство, и для этих же целей, запускается в России. Но проблема в зерне, цена которого резко увеличилась. А ведь это основной источник питания! Непосредственно при выпечке булочных изделий или в качестве корма для животных в производстве мяса.

Таблица 15.2

Некоторые перспективные направления переработки биомассы

Вид энергетических ресурсов

Процессы переработки

Продукты переработки

Основные потребители*

Сухая биомасса (древесина и отходы её переработки)

Сжигание

Тепло, электроэнергия

П, Б

Газификация

Газообразное топливо,(метанол, водород, аммиак)

П, Т Х

Пиролиз

Нефть, смола, газ

П, Т

Гидролиз

Этанол

Т, Х

Сточные воды животноводства, водные живые организмы

Анаэробная ферментация

Метан

П, Б

Отходы пищевой промышленности (сахар, соки, целлюлоза)

Ферментация

Этанол

Т, Х

* потребители продуктов переработки биоресурсов: П – все отрасли промышленности;  Б – бытовое и коммунальное хозяйство; Т – транспорт; Х – химическая и биохимическая промышленность.

В число возможных заменителей топлива недавно внесен и эвка­липт. Японские ученые показали в своих работах, что эвкалиптовое масло можно использовать в качестве заменителя бензина или одного из компонентов топлива для двигателей внутреннего сгорания. Одно из основных преимуществ этого вида топлива – чрезвычайно низкое содер­жание вредных выбросов в продуктах его сгорания.

Одним из важнейших среди вспомогательных источников энергии справедливо считают отходы сельскохозяйственного производства, в том числе жидкие и твёрдые отходы животноводства. Сосредоточенная в них химическая энергия – это тоже результат трансформации солнеч­ной энергии.

Наиболее перспективный метод переработки таких отходов связан с получением биогаза. Биогаз представляет собой смесь горючего газа метана (60-70%) и негорючего углекислого газа (30-35%), В нём обычно бывает немного примесей: сероводород, водород, кислород, азот. Образуется биогаз в результате анаэробного разложения органических соединений, поэтому сырьём для его получения могут быть не только отходы животноводства, но и осадки сточных вод, мусор и не­которые другие органические отходы.

При анаэробном разложении таких отходов, в зависимости от химического состава сырья, выделяется от 5 до 15 м3 биогаза на м3 перерабатываемой органики. Обычно процесс идёт не до кон­ца и примерно половина органических веществ не разлагается. Но этот неразложившийся остаток является прекрасным удобрением. Поскольку процесс анаэробного разложения протекает при температуре 50-55°С в течение нескольких дней, значительная доля болезнетворных мик­роорганизмов и яиц гельминтов гибнет, поэтому образующийся остаток обеззараживается (и происходит его дезодорация). В состав этого остатка входят азот, фосфор, калий и другие микроэлементы. Использование такого удобрения в сельском хозяйстве как бы замыкает кругооборот веществ. Вещества, извлечен­ные из почвы растениями, вновь возвращаются в почвенный слой.

Полученный в результате анаэробного разложения биогаз имеет теплотворную способность около 5000 ккал/м3. Его можно сжигать для получения электроэнергии, отопления домов, использовать в каче­стве горючего для автомобилей и тракторов. Работы по получению биогаза при переработке сельскохозяйствен­ных отходов широко ведутся в различных странах мира. Расчёты специалистов показывают, что установка, перерабаты­вающая навоз от 300 коров, рентабельна.

Таким образом, при производстве биогаза можно не только избавиться от неприятных отходов животноводства, но получить энергию и ценное удобрение.

На главную