Атомные станции с реакторами РБМК 1000 (1500). Реактор большой мощности канальный

Конденсатор. Общие сведения.

 

Общие сведения.
   Замкнутость пароводяного цикла тепловых электростанций предопределяет необходимость конденсации всего расхода пара, проработавшего в турбине. Этот процесс, изображенный на рисунке 1 в Т,s-диаграмме осуществляется в конденсационной установке при постоянном давлении за счет подогрева охлаждающей воды, температура которой ниже температуры насыщения пара. На рисунке 1 изменение температуры охлаждающей воды отвечает длине пути воды в конденсаторе и на Т, s-диаграмме показано условно.

 

Процесс конденсации параПроцесс конденсации пара и нагрева охлаждающей воды в конденсаторе.

   Процесс конденсации может идти при любом давлении. Однако чем меньше температура отвода теплоты цикла (что соответствует более низкому давлению конденсации), тем выше тепловая экономичность паротурбинной установки при неизменных начальных параметрах, если при этом не возникают потери из-за необратимости протекающих процессов. Характеристики водяного пара таковы, что, добиваясь расширения пара в турбине до давлений, меньших атмосферного, можно увеличить теплоперепад в ней на 25—30 и даже 40 % в зависимости от начальных параметров пара. Поэтому основная задача конденсационной установки — установление и поддержание разрежения в выхлопном патрубке турбины, а тем самым и внутри конденсатора.
   Схема конденсационной установки с учетом сказанного представлена на рисунке 2. Из выходного патрубка турбины в паровой объем поверхностного конденсатора поступает пар, отработавший в турбине. Через трубки конденсатора циркуляционным насосом прокачивается охлаждающаяся вода. Образовавшийся конденсат стекает в нижнюю часть конденсатора и конденсатным насосом возвращается в цикл. Для создания разрежения в выхлопном патрубке турбины и конденсаторе в состав конденсационной установки входит пароструйный эжектор, к которому подводят пар одного из отборов турбины (а иногда и острый пар). В связи с разрежением в конденсаторе в его паровой объем постоянно поступает воздух из окружающей среды, поэтому паровой эжектор работает непрерывно, отсасывая этот воздух из конденсатора вместе с некоторым количеством пара.

 

Схема конденсаторной установки Схема конденсационной установки:
   1 - пар из выходного патрубка турбины;
   2 - поверхностный конденсатор;
   3 - циркуляционный насос;
   4 - конденсатный насос;
   5 - пароструйный эжектор;
   6 - подвод пара к эжектору;
   7 - отсос паровоздушной смеси.

Конечное давление в конденсаторе (величина вакуума).
   Величина вакуума в конденсаторе существенно влияет на тепловую экономичность станции. Приближенная численная зависимость термического к. п. д. паротурбинной установки от конечного давления пара представлена на рисунке 3, из которого следует, что, снизив давление в конденсаторе с 0,004 до 0,003 МПа, можно увеличить к. п. д. установки примерно на 2%, и, наоборот, увеличение давления с 0,004 до 0,005 МПа приведет к снижению экономичности более чем на 1%.

 

Изменение термического к. п. д. паротурбинной установки в зависимости от величины вакуума (при неизменных начальных параметрах пара).

   Конденсация пара в конденсаторе происходит за счет нагрева циркуляционной охлаждающей воды от начальной температуры tox1 до конечной tox2 , поэтому температура конденсации не должна превышать tox2 и может лишь приближаться к ней. Между тем температуры охлаждающей воды на входе в конденсатор tox1, в зависимости от выбранной системы технического водоснабжения и месторасположения станции, меняются в пределах от 0 до 15 град С в зимнее время и от 15 до 33 град С в летнее. Если принять нагрев воды в конденсаторе около 10 град С, то выходные температуры воды летом составят от 25 до 43 град С. Воспользовавшись зависимостью температуры насыщения от давления пара , можно установить, что давление в конденсаторе может при этом составить 0,0033 - 0,006 МПа.

 

Изменение температуры насыщения tк и удельного объема V" насыщенного пара в зависимости от давления рк пара в конденсаторе.

   Теплообмен через поверхность нагрева не позволяет вести конденсацию пара при температуре конденсата, равной выходной температуре охлаждающей воды, и требует дополнительного перепада температур dt (рисунок1), принимаемого на уровне 3 - 5 град С, реже до10 град С. С учетом этих обстоятельств тепловой баланс конденсационной установки:
(1)
   где Dк — расход в конденсатор, кг/ч; iк и iк — соответственно энтальпии пара после турбины и конденсата после конденсатора, кДж/кг; W — расход охлаждающей циркуляционной воды, кг/ч; iox1и iox1 — энтальпии этой воды до и после конденсатора, кДж/кг.
   В уравнении не учтена внешняя потеря теплоты в окружающую среду, так как она пренебрежимо мала по сравнению с основными членами. Уравнение (1) можно переписать в виде:

   или условно, если принять что температура пропорциональна энтальпии:
(2)
   Величина m называется кратностью охлаждения. Из равенства (2) можно определить выходную температуру охлаждающей воды в зависимости от кратности охлаждения:
(3)
   Так как температура конденсации :

   то с учетом уравнения (3) можно написать:
(4)
   Из (4) следует, что температура (давление) конденсации в наибольшей степени зависит от начальной температуры охлаждающей воды и, следовательно, от источника и системы водоснабжения, а также от времени года (зимой поддерживать вакуум легче). Но при одной и той же начальной температуре охлаждающей воды вакуум в конденсаторе существенно зависит от кратности охлаждения, поэтому выбор вакуума в конденсаторе может быть сделан только на основе технико-экономических расчетов. При этом следует учитывать, что чем глубже вакуум, тем выше экономичность турбинной установки, меньше расход пара и расход на конденсатные насосы, но тем больше должна быть поверхность теплообмена в конденсаторе и кратность охлаждения. Следовательно, возрастают капиталовложения в циркуляционную установку и увеличивается расход электроэнергии на привод циркуляционных насосов. На рисунке 5 приведена зависимость давления в конденсаторе от кратности охлаждения при dt = 3 град С для трех значений входной температуры охлаждающей воды: 10, 15 и 20 град С. Расчетные кривые построены, исходя из следующих соображений. На входе в конденсатор пар обычно бывает влажным. Полная теплота парообразования для давлений от 0,003 до 0,005МПа может быть в среднем оценена как 2430 кДж/кг. Если принять влажность пара на входе в конденсатор в среднем равной 9,0%, то для конденсации 1 кг пара необходимо отвести от него 2195 кДж/кг. Тогда вместо (4) с учетом теплоемкости воды можно написать:

Зависимость давления в конденсаторе от кратности охлаждения при
dt = 3 град С и (iк - iк ) = 2195 кДж/кг
   1 - tox1 = 10 град С
   2 - tox1 = 15 град С
   3 - tox1 = 20 град С

   Из рисунка 5 следует, что увеличение кратности охлаждения сверх значений порядка 80 нецелесообразно, так при этом теоретически возможный вакуум в конденсаторе изменяется в малой степени. Обычно кратность охлаждения m = 50—60 для любых тепловых электростанций, в том числе и атомных.
   Из (4) следует, что технико-экономическому выбору подлежит также и величина dt. В самом деле, чем больше dt, тем меньше потребная поверхность нагрева конденсатора и соответствующие капиталовложения. Но для сохранения того же вакуума и, следовательно, той же экономичности паротурбинной установки придется увеличить кратность охлаждения, в связи с чем, возрастут капиталовложения на циркуляционное водоснабжение и соответствующие расходы на собственные нужды. Поэтому вариантные расчеты для выбора кратности охлаждения и оптимальной величины вакуума должны производиться для различных значений dt и связанных с этим величин поверхности нагрева конденсатора. Однако все эти достаточно сложные расчеты не могут дать окончательного ответа, так как давление в конденсаторе - величина, непосредственно сопряженная с давлением за последней ступенью турбины.
   С углублением вакуума объем пара резко возрастает (смотри рисунок 4). Изменение давления в конденсаторе от 0,004 до 0,003 МПа приводит к увеличению удельного объема пара более чем на 30%, поэтому при глубоком вакууме пропуск пара, даже при предельных высотах лопаток последней ступени, может встретить затруднения. Если же повышать скорости пропуска пара, то выходные потери турбины могут резко возрасти и выигрыша в экономичности турбинной установки не будет. Окончательный выбор вакуума в конденсаторе требует совместного рассмотрения и технико-экономического решения этого вопроса применительно и к паротурбинной установ-ке. Сопоставление расходов пара для турбин различных параметров приводит к несомненному заключению о целесообразности вакуума не глубже 0,004 МПа для мощных турбин насыщенного пара, применяемых в атомной энергетике, в сравнении с турбинами тех же мощностей в обычной теплоэнергетике, для которых давление в конденсаторе выбирают обычно 0,0035 МПа. К числу конечных параметров следует отнести также влажность пара. Однако ограничения по влажности пара ставит не конденсационная установка, а турбина, поэтому этот вопрос рассмотрен в теме посвященной турбинной установке.



На главную