Термоядерный синтез

Физика
Элементы квантовой механики
Молекулярные спектры
Полупроводники
Ядерная физика конспект
Решение задач по ядерной физике
Физика атомного ядра и частиц
Примеры решения задач
Оптическая физика
Физика элементарных частиц
Законы радиоактивного распада
Задачи по теме Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Задачи на ядерные реакции
Деление и синтез ядер
Кинематика примеры задач
Электротехника
Общий курс
Теоретические основы электротехники
Расчет электрической цепи
Трехфазные цепи
Электрические машины и трансформаторы
Электрические двигатели и генераторы
Математика
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Атомная энергетика
АЭС России
Развитие энергетики России
Курсовые по энергетике
Ядерные реакторы
РБМК
ВВЭР
Атомные реакторы на быстрых нейтронах
Физика ядерного реактора
Аварийные ситуации на АЭС
Повышение безопасности АЭС
Проблема снижения выбрасов АЭС
Системы контроля на атомной станции
Экологическая политика
Атомные батареи
Ядерные двигатели
Авария на ЧАЭС
Термоядерный синтез
Термоядерный реактор
Тепловая энергетика
Паровой котел
Тепловые станции
Системы теплоснабжения
Экологические проблемы в теплоэнергетике
Экологический аспект
Электрофильтры
Регенеративные методы
Математическое моделирование экологических систем
Ядерное оружие
Полигон Новая земля
История создания
Информатика
Архитектура ЭВМ
Операционная система
Вычислительные комплексы
Начертательная геометрия
Курс лекций
Практикум по решению задач
Геометрическое черчение
Инженерная графика
Каталог графических примеров

 

Из четырех основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий (наиболее мощный) источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики Термоядерные реакции - реакции слияния (синтеза) легких атомных ядер в более тяжелые, происходящие при очень высоких температурах (порядка десятков миллионов градусов и выше). Запасы дейтерия, который можно использовать в D - T реакции, практически неограниченны. В гидросфере Земли запасено 4*1013 т дейтерия, который может явиться основным термоядерным горючим.

Ядерные реакции в звездах Прежде чем рассматривать ядерные реакции в космосе, коротко остановимся на проблеме звездной эволюции. Окружающий нас мир состоит из различных химических элементов. Как образовались эти элементы в естественных условиях? В настоящее время общепризнанной является точка зрения, что элементы, из которых состоит Солнечная система, образовались в ходе звездной эволюции. Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода Следующий этап термоядерной реакции - горение гелия В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез. Эволюция Вселенной начинается с Большого Взрыва. В первые мгновения реализуется так называемая дозвездная стадия образования элементов, стадия образования легчайших элементов. Какая из этих двух реакций играет более существенную роль, зависит от температуры звезды. В звездах, имеющих массу, сравнимую с массой Солнца, и меньше, доминирует протон - протонная цепочка. Основное время эволюции звезды связано с горением водорода. Но на этой стадии звездной эволюции массивных звезд существенную роль начинают играть многочисленные реакции с участием нейтронов, протонов, а-частиц и 7- квантов Характерные особенности реакций горения углерода и кислорода следующие Продукты s-процесса должны эффективно выноситься во внешнюю оболочку звезды и попадать в межзвездную среду без дальнейших ядерных реакций. Один из аргументов в подтверждение r-процесса в звездах - наличие сдвоенных максимумов, коррелирующих с магическими числами нейтронов N = 50, 82 и 126 В углеродно-азотном цикле ядро углерода C служит как бы катализатором.

Зависимость эффективного коэффициента размножения от обогащения ядерного топлива

Источником ионизирующего излучения может быть космический объект, земной объект, содержащий радиоактивный материал, или техническое устройство, испускающее или способное испускать ионизирующее излучение.

Физические основы ядерного синтеза Термодинамика ядерного синтеза То, что ядерные реакции синтеза могут давать высокий энергетический выигрыш понятно не только из астрономических данных. Поэтому, когда образуется среднее или лёгкое ядро при слиянии более лёгких ядер, должна освобождаться энергия, поскольку в новом ядре нуклоны сильнее связаны, чем в исходных ядрах. Реакции ядерного синтеза В термоядерных реакторах используется энергия, выделяющаяся при слиянии легких атомных ядер Термоядерные топлива Реакции с участием протонов, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Оказалось, что последнюю реакцию наиболее легко зажечь в земных условиях (требуется нагреть смесь дейтерия с тритием "всего" до 100 миллионов градусов)

Термоядерный синтез в земных условиях Термоядерный синтез в медленном реакторе Взрыв водородной бомбы (или другого типа термоядерного процесса) - неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей. Принцип действия термоядерного реактора Реакция слияния легких ядер, цель которой - получение полезной энергии, называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.

Магнитное удержание плазмы Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Термоядерные реакции протекают при высоких температурах

В состоянии плазмы находится подавляющая часть вещества Вселенной - звёзды, звёздные атмосферы, туманности галактические и межзвёздная среда. В магнитном поле с индукцией В на частицы плазмы действует Лоренца сила; в результате этого заряженные частицы плазмы вращаются с циклотронными частотами по ларморовским спиралям (кружкам). При описании плазмы с помощью уравнений магнитной гидродинамики она рассматривается как сплошная среда, в которой могут протекать токи

Спектр излучения низкотемпературной (например, газоразрядной) плазмы состоит из отдельных спектральных линий Чтобы удержать плазму, например, при температуре 108 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме. Системы с замкнутой магнитной конфигурацией Пинч-эффект появляется в токовом канале, например в цилиндре, заполненном проводящей средой. Электрическое поле приложено к противоположным концам цилиндра и действует по его оси. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка

Установки с магнитным удержанием Одной из первых и самых простых попыток реализовать идею магнитного удержания является Z-пинч - плазменный шнур между двумя электродами, ток в котором создает азимутальное магнитное поле, призванное сжимать и удерживать плазму. Для удержания плазмы при помощи тороидального магнитного поля необходимо создать условия, при которых плазма не смещалась бы к стенкам тора

Токамак В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом, как у всякого тока, у него появлялось собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками Основной нагрев идет за счет джоулева тепловыделения. Сильно нагреваются прежде всего электроны плазмы, менее - ионы. Передача энергии от электронов к ионам идет медленно (из-за малости потока энергии)

Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Создание термоядерного реактора натолкнулось на ряд технологических трудностей

Стелларатор Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками. Открытая ловушка В установке типа открытой ловушки (пробкотрон) в цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации. Чтобы не доводить дело до взрыва, термоядерная реакция должна протекать в малых дозах - в разреженной и очень нагретой дейтерий-тритиевой плазме Начальный этап работ характеризовался обилием идей и типов ловушек (пинчи, удержание высокочастотными полями, плазменные ускорители, способы нагрева плазмы и т. д.) К 1968 г. при омическом нагреве плазмы на токамаке Т-ЗА температуры электронов и ионов достигли 20 млн. и 4 млн. градусов соответственно - результат, в несколько раз превосходивший мировой уровень. В 1997 г., после завершения технического проекта реактора ИТЭР с термоядерной мощностью 1.5 ГВт, стороны решили изменить проект, чтобы сократить его стоимость с 8 до 4 млрд. долл.

В физической базе ИТЭРа, основанной на опыте десятков токамаков ведущих лабораторий мира, собраны результаты по удержанию плазмы, переходу в режимы улучшенного удержания, поведению плазмы в поверхностном слое, увлечению тока, нагреву электронов и ионов и т.д. Современные открытые магнитные системы исследуются под руководством академика Э.П.Круглякова в Институте ядерной физики им. Г.И.Будкера СО РАН на установках многопробочной ГОЛ-З, газодинамической ГДЛ и амбиполярной АМБАЛ-М, наиболее простых в инженерном отношении для реакторов, но сложных в отношении удержания.

Сегодня лазер - неоспоримый лидер в работах по инерционному удержанию. В СССР исследования начались на многомодульной установке "Ангара-5-1", построенной в 1984 г. в филиале Института атомной энергии (теперь ТРИНИТИ) в Троицке

На главную