Развитие энергетики России Тепловые станции Экологический аспект Электрофильтры Регенеративные методы Математическое моделирование экологических систем Аварийные ситуации на АЭС

Введение в экологию энергетики

Гомогенные восстановительные методы, как и каталитические, предусматривают использование восстанавливающих агентов (NН3, пиридин, пары мочевины, СО, Н2, СН4 и другие углеводороды). Процессы протекают при температурах 700...2000 °С в газовой фазе. Наиболее целесообразно методы этого типа применять для денитрификации относительно концентрированных по NОХ газов (более 5 % по объему). При более низких его концентрациях (0,2... 0,7% по объему), что характерно для дымовых газов электростанций, эффективность очистки невелика и составляет 47...55% [5]. Для ее повышения необходимо применять избыток восстановителя.

Для денитрации дымовых газов применяют также адсорбционные методы. В качестве адсорбентов оксидов азота применяют активированный уголь, Al2O3, SiО2, алюмосиликаты, Са(ОН)2, СаО2 и соли кальция, соду, цемент, цеолиты, соли аммония. Процессы протекают как правило при низких температурах. Данные методы целесообразно применять при очистке концентрированных газов по NОХ.

Существенным недостатком этих методов является поглощение адсорбентом пыли, которая быстро забивает поры адсорбента и не удаляется при десорбции. При промывке адсорбента водой образуются стоки разбавленной азотной кислоты, загрязненные различными примесями, в том числе и тяжелыми металлами. Адсорбционные методы можно применять для очистки небольших объемов газов с небольшим содержанием оксидов азота.

В последнее время появились данные, свидетельствующие о возможности применения лазерного облучения очищаемых газов. Длина волны при этом выбирается из расчета преимущественного поглощения и диссоциации SО2 и NОХ с получением соответственно S и N2.

Применение озонных методов для очистки газов развивается в направлении совместного обезвреживания дымовых газов от SO2 и NОХ. Введение озона ускоряет реакцию окисления NО до NО2 [6] и SO2 до SO3 [7]. После ввода озона в дымовые газы и образование NO2 и SO3 осуществляют ввод аммиака и выделение смеси образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта «газ - озон», необходимое для очистки от SO2 (80...90 %) и NO3 (70...80 %), составляет 0,4...О,9 сек. Энергозатраты на очистку газов озонным методом оцениваются в пределах 4...4,5 % от эквивалентной мощности энергоблока, то есть довольно велики, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода [7].

В настоящем разделе кратко описываются особенности каждого из перечисленных методов и их применение для обезвреживания одного из наиболее массовых загрязнителей атмосферы - оксидов азота. Основное внимание уделяется очистке газов от оксидов азота на основе каталитических методов.

1.1. Адсорбционные методы

Адсорбционные методы - одни из самых распространенных средств защиты воздушного бассейна от загрязнений. Область применения современных адсорбентов в процессах очистки газов очень широка [7-10].

Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты.

Активированный уголь (АУ) нейтрален как к полярным, так и к неполярным молекулам адсорбируемых соединений. Активированные угли обладают меньшей селективностью, чем другие адсорбенты и являются одними из немногих, пригодных для работы во влажных газовых потоках.

Оксидные адсорбенты (ОА) обладают более высокой селективностью по отношению к полярным молекулам в силу собственного неоднородного распределения электрического потенциала. Их недостаток - снижение эффективности в присутствии влаги. К классу ОА относят селикагели, синтетические цеолиты, оксид алюминия. Даже синтетические цеолиты, приготовленные с заданными размерами пор, не позволяют преодолеть предпочтительность адсорбции полярных молекул, Вследствие этого при наличии паров воды эти цеолиты не

поглощают те молекулы, размеры которых соответствуют их пористой структуре.

Импрегнированные адсорбенты (ИА) делят на три группы:

ИА с пропиткой, представляющий химический реагент, который позволяет превращать за счет химической реакции трудноадсорбируемое соединение в легкоадсорбируемое;

ИА, в которых пропитка играет роль катализатора разложения удаляемых примесей (эту роль могут играть введенные в АУ кислородсодержалдае соединения, окисляющие примеси в бескислородных или малокислородных газах). В качестве примера можно привести окисление NО в NО2;

ИА с периодически действующей в качестве катализатора пропиткой (в этом случае активацию проводят, например, путем периодического повышения температуры после завершения цикла адсорбции примесей).

Адсорбция молекул газообразного вещества на поверхности твердого адсорбента сопровождается выделением тепла, количество которого зависит от природы образующихся связей между молекулами адсорбируемого вещества и адсорбента. Различают физическую и химическую адсорбцию (хемосорбцию). В последнем случае теплота адсорбции значительно выше, чем в первом, что создает дополнительные проблемы перегрева адсорбента в ходе очистки газов и усложняет аппаратурное оформление процесса.

Для десорбции примесей применяют нагревание адсорбента, вакуумирование, продувку инертным газом, вытеснение примесей более легко адсорбирующимся веществом, например водяным паром [10]. В последнее время особое внимание уделяется десорбции примесей путем вакуумирования. При вакуумировании системы и непрямом нагреве удается утилизировать выделяющиеся примеси.

В отличие от США, которые перенесли подземные испытания с островов в штат Невада, Франция осуществляла здесь и подземные взрывы. В результате на поверхности атоллов образовались трещины, создающие угрозу просачивания в океан самого смертоносного из всех радиоактивных изотопов – радиоактивного плутония – и заражения все больших морских просторов.

Технология подземных атомных взрывов такова: на атолле бурят скважину глубиной 550-1100 м, в зависимости от мощности бомбы. В скважину опускают стальные трубы, а пространство между трубами и породой заливают цементом. Далее вниз опускают бомбу с измерительными приборами, провода от которых выходят на поверхность, после чего всю скважину доверху закупоривают особыми цементными пробками, чтобы преградить путь радиоактивным газам и частицам. Взрыв осуществляет оператор из бетонного здания, расположенного на значительном расстоянии от скважины. Высвобождаемая энергия создает взрывную волну огромной мощности, при этом создается такая температура, что в центре взрыва плавится и даже испаряется базальт. Образуются пустоты, заполняемые расплавленной породой, поглощающей радиоактивные частицы, и трещины

В результате наземных и подземных взрывов происходит радиоактивное заражение местности. Радиоактивные вещества переносятся по воздуху и морю на значительные расстояния, подвергая опасности заражения окружающие эти атоллы острова. Помимо прямого радиоактивного облучения, островитяне, питаясь главным образом овощами и рыбой, употребляя в качестве питьевой воды дождевую воду, пассивно накапливают радиоактивные вещества. Рыба, в органах которой накапливаются эти вещества, из районов радиоактивного загрязнения совершают далекие миграции и может быть выловлена и употреблена в пищу в других районах. Поэтому загрязнение океана оказывает влияние практически на всех жителей планеты.

В последние годы стало ясно, что даже разоружение и уничтожение оружия сопряжены с огромным экологическим риском.

Войны и их воздействие на окружающую среду. И наконец, самое опасное в деятельности ВПК – это войны, несущие обширные опустошения. Войны были постоянным спутником человека. С 1496 г. до н. э. по 1861 г. люди воевали 3130 лет и только 227 лет жили в мире. В период 1900-1938 гг. произошло 24 войны, а в 1946-1979гг. - 130 войн. Театр военных действий охватывает колоссальные площади государств, в зоне которого происходит прямое непосредственное разрушение всей среды обитания. Строительство военной инфраструктуры (дорог, укреплений, траншей) увеличивает площадь используемых земель, перемещаются многие миллионы кубометров грунта, безжалостно уничтожаются растительность, почвенный покров, загрязняются воду, атмосфера. Этому способствует и применение отравляющих веществ, как это было во время войны во Вьетнаме (гербицидами было уничтожено 568 тыс. га леса, 363,8 тыс. га посевов сельскохозяйственных культур). Сильное загрязнение вод Персидского залива нефтью и нефтепродуктами наблюдалось и в недавней войне, спровоцированной Ираком против Кувейта. Наличие нефтяной пленки вызывает гибель планктона, служащего кормом рыбам. Происходит гибель стада и другие негативные последствия. А представьте себе последствия ядерной войны! Исследования показывают, что если произойдет крупномасштабная война, в ходе которой крупнейшие города мира подвергнутся ядерной бомбардировке, то огромные пространства земли охватят сумерки. Солнечный свет не сможет пробиться через гигантские облака, состоящие из сажи, образовавшейся во время взрывов и пожаров. Средняя температура в некоторых регионах может упасть на несколько десятков градусов, т. е. будет ниже точки замерзания воды,- наступит ядерная зима, которая может продлиться в течение длительного времени. 


На главную