Развитие энергетики России Тепловые станции Экологический аспект Электрофильтры Регенеративные методы Математическое моделирование экологических систем Аварийные ситуации на АЭС

Введение в экологию энергетики

Аналитические и имитационные модели

Аналитические модели (англ. analytical models) – один из классов математического моделирования, широко используемый в экологии. При построении таких моделей исследователь сознательно отказывается от детального описания экосистемы, оставляя лишь наиболее существенные, с его точки зрения, компоненты и связи между ними, и использует достаточно малое число правдоподобных гипотез о характере взаимодействия компонентов и структуры экосистемы. Аналитические модели служат, в основном, целям выявления, математического описания, анализа и объяснения свойств или наблюдаемых феноменов, присущих максимально широкому кругу экосистем. Так, например, широко известная модель конкуренции Лотки–Вольтерра позволяет указать условия взаимного сосуществования видов в рамках различных сообществ.

Одной из основных задач системной динамики является оценка устойчивости экосистем и описание качественных перестроек их поведения под воздействием внешних факторов. Наиболее адекватным математическим аппаратом построения и анализа таких аналитических моделей служит качественная теория дифференциальных уравнений [Эрроусмит, Плейс, 1986] и теория бифуркаций [Свирежев, Логофет, 1978; Свирежев, 1987]. Особую роль играют стохастические модели потенциальной эффективности экосистем Б.С. Флейшмана [1982, 1986].

При моделировании экосистем возникает также необходимость в исследовании диссипативных структур, энтропийных характеристик и процессов самоорганизации. А.Дж. Вильсоном [1978] излагается общая теория энтропийных моделей многокомпонентных экосистем, где взаимодействия на микроуровне описываются статистикой Больцмана.  Г. Шустер [1988] приводит примеры моделей динамики популяций в открытых системах, полученные на основе теории стохастического поведения динамических диссипативных структур. Работа Дж. Николиса [1989] относится к области синергетики и исследует процессы самоорганизации открытых иерархических экосистем в ходе диссипации новой информации. Что собой представляет процесс рассеяния? Этот процесс происходит при столкновении нейтрона с ядром, но когда нейтрон не исчезает, а сталкивается с ядром, меняет направление своего полета, и куда-то летит дальше

В качестве примера аналитической модели гидробиологических процессов "цветения водохранилищ" укажем на работы С.В. Крестина и Г.С. Розенберга [1996, 2002], где в рамках взаимодействий систем конкуренции видов и "хищник - жертва" дано возможное объяснение феномена вспышек численности сине-зеленых водорослей и более сложного процесса "волны цветения" по профилю водохранилища.

Имитационные модели (англ. simulation models) – один из основных классов математического моделирования. Целью построения имитаций является максимальное приближение модели к конкретному (чаще всего уникальному) экологическому объекту и достижение максимальной точности его описания. Имитационные модели претендуют на выполнение как объяснительных, так и прогнозных функций, хотя выполнение первых для больших и сложных имитаций проблематично (для удачных имитационных моделей можно говорить лишь о косвенном подтверждении непротиворечивости положенных в их основу гипотез).

Имитационные модели реализуются на ЭВМ с использованием блочного принципа, позволяющего всю моделируемую систему разбить на ряд подсистем, связанных между собой незначительным числом обобщенных взаимодействий и допускающих самостоятельное моделирование с использованием своего собственного математического аппарата (в частности, для подсистем, механизм функционирования которых неизвестен, возможно построение регрессионных или самоорганизующихся моделей). Такой подход позволяет также достаточно просто конструировать, путем замены отдельных блоков, новые имитационные модели. Если имитационные модели реализуются без блочного принципа, можно говорить о квазиимитационном моделировании. Имитации, в которых все коэффициенты определены по результатам экспериментов над конкретной экосистемой, называются портретными моделями (цитата из В.В. Налимова [1971]: «поражают иной раз так называемые "портретные модели", в которых не заключено какое-либо большое содержание, а просто на языке математики записывается то, что с одинаковым успехом можно было бы выразить и на обычном языке. Ясно, что такие модели вызывают только раздражение у представителей конкретных областей знаний. Что нового, например, получила биология от того, что часть ее представлений была переформулирована в терминах теории информации?»)

Методы построения имитационных моделей чаще всего основываются на классических принципах системной динамики Дж. Форрестера [1978] (см. также [Гильманов, 1978; Крапивин c соавт., 1982]). Создание имитационных моделей сопряжено с большими затратами. Так, модель ELM (злаковниковой экосистемы, используемой под пастбище) строилась 7 лет с годовым бюджетом программы в 1,5 млн. долл. около 100 научными сотрудниками из более 30 научных учреждений США, Австралии и Канады [цит. по: Розенберг., 1984].

Построение имитационной модели может служить организующим началом любого серьезного экологического исследования. Хотя частная экосистема реки или озера и является элементарной ячейкой биосферы, ее математическая модель описывается системами уравнений того же порядка сложности, что и вся биосфера в целом, поскольку требует учета такого же большого количества переменных и параметров, описывающих функционирование отдельных подсистем и элементов (только на ином масштабном уровне). Поэтому исследователи ищут разумный компромисс: при составлении моделей многие параметры берутся агрегировано, допускаются разного рода аппроксимации и гипотезы, многие коэффициенты принимаются "по аналогии" с другими объектами и т.д. Поскольку среди допущений и предположений трудно выбрать наилучшее, снижается точность и познавательная ценность моделей, а, следовательно, их практическая применимость.

В настоящее время можно отметить два направления развития имитационного моделирования, где предлагаются достаточно конструктивные методы компенсации априорной неопределенности, проистекающей от нестационарного и стохастического характера экологических систем. Первое направление оформилось в виде методики решения задач идентификации и верификации как последовательного процесса определения и уточнения численных значений коэффициентов модели [Георгиевский, 1982; Сердюцкая, 1984]. Второе направление связано со стратегией поиска скрытых закономерностей моделируемой системы и интеграции их в модель [Лапко с соавт., 1999].


На главную